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OWSS AND MIMO-STC-OFDM: SIGNALING SYSTEMS FOR THE NEXT 
GENERATION OF HIGH SPEED WLANS 

 
DINESH DIVAKARAN 

ABSTRACT 

 

The current popularity of WLANs is a testament primarily to their convenience, 

cost efficiency and ease of integration. Even now the demand for high data rate wireless 

communications has increased fourfold as consumers demand better multimedia 

communications over the wireless medium. The next generation of high speed WLANs is 

expected to meet this increased demand for capacity coupled with high performance and 

spectral efficiency. The current generation of WLANs utilizes Orthogonal Frequency 

Division Multiplexing (OFDM) modulation. The next generation of WLAN standards 

can be made possible either by developing a different modulation technique or combining 

legacy OFDM with Multiple Input Multiple Output (MIMO) systems to create MIMO-

OFDM systems. This dissertation presents two different basis technologies for the next 

generation of high speed WLANs: OWSS and MIMO-STC-OFDM.   

 

OWSS, or Orthogonal Wavelet Division Multiplexed - Spread Spectrum is a new 

class of wavelet pulses and a corresponding signaling system which has significant 

advantages over current signaling schemes like OFDM. In this dissertation, CSMA/CA is 

proposed as the protocol for full data rate multiplexing at the MAC layer for OWSS. The 

excellent spectral characteristics of the OWSS signal is also studied and simulations show 
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that passband spectrum enjoys a 30-40% bandwidth advantage over OFDM. A novel pre-

distortion scheme was developed to compensate for the passband PA non-linearity. 

Finally for OWSS, the fundamental limits of its system performance were also explored 

using a multi-level matrix formulation. Simulation results on a 108 Mbps OWSS WLAN 

system demonstrate the excellent effectiveness of this theory and prove that OWSS is 

capable of excellent performance and high spectral efficiency in multipath channels. 

 

 This dissertation also presents a novel MIMO-STC-OFDM system which targets 

data rates in excess of 100 Mbps and at the same time achieve both high spectral 

efficiency and high performance. Simulation results validate the superior performance of 

the new system over multipath channels. Finally as channel equalization is critical in 

MIMO systems, a highly efficient time domain channel estimation formulation for this 

new system is also presented. 

 

In summary, both OWSS and MIMO-STC-OFDM appear to be excellent 

candidate technologies for next generation of high speed WLANs. 
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CHAPTER 1 

INTRODUCTION 

 

In recent years the demand for high data rate wireless communications [1] has 

increased steadily as consumers demand better multimedia communications over the 

wireless medium. A wireless LAN or WLAN [2], [3] is a wireless local area network 

which connects two or more computers or devices without using wires. Current state of 

the art WLAN systems like 802.11a/g [4],[5] utilize Orthogonal Frequency Division 

Multiplexing (OFDM) [6]-[8] modulation technology based on radio waves in the 5 and 

2.4 GHz public spectrum bands, to enable communication between devices in a limited 

area, also known as the basic service set. This gives users the mobility to move around 

within a broad coverage area and still be connected to the network. The popularity of 

wireless LANs is a testament primarily to their convenience, cost efficiency, and ease of 

integration with other networks and network components. The majority of computers sold 

to consumers today come pre-equipped with all necessary WLAN technology. 

  

The current WLAN systems are capable of a maximum data rate of 54 Mbps [2]-

[5]. The next generation of WLAN standards is expected to touch bit rates of 108 Mbps 

and possible even 240 Mbps [2]. This can be made possible either by developing new 

standards based on a different modulation technique than OFDM or combining OFDM 

with state of the art Multiple Input Multiple Output (MIMO) [9]-[12] systems (systems 

1
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employing multiple transmit and receive antennas) to create MIMO-OFDM systems [12]-

[16]. Current R&D efforts including the eagerly awaited 802.11n standard [17]-[18] are 

directed at MIMO-OFDM, however there is an urgent need to look at other signaling 

schemes which can overcome the inherent disadvantages of OFDM without the use of 

MIMO.  OWSS, or Orthogonal Wavelet Division Multiplexed - Spread Spectrum [19]-

[22] is a new class of wavelet [23] pulses and a corresponding signaling system which 

can be a candidate technology for the next generation high speed WLANs. These pulses 

are generated through a combination of Orthogonal Wavelet Division Multiplexing 

(OWDM) [24] and Spread Spectrum (SS) [25] concepts. The OWSS system has 

significant advantages over current signaling schemes like OFDM, TDMA [1] and even 

OWDM. Some of these unique advantages are: wide time and frequency support [19], 

multiple user capability [28], [32] [19], effective multipath channel equalization [27], 

[29],-[31], continuously pipelined operation (in contrast to OFDM), high bandwidth 

efficiency [26], [31] and robustness against deep fading frequency selective channels 

unlike OFDM [19],[21].  

  

 OWSS is a new modulation scheme for high speed WLANs, however as 

mentioned earlier current research trends based on combining the current modulation 

scheme OFDM with MIMO. Towards this end, a new MIMO-STC-OFDM system [33]-

[35] was developed which targets next generation data rates (108 Mbps), and at the same 

time achieve both high spectral efficiency and high performance (high data rate with low 

BER) over frequency selective channels. This new system is accomplished by a 

combination, or layering [36]  of MIMO OFDM [12]-[16], group transmit signals and 

2
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3

antennas [37], space time coding [38], [39], array processing [37] at the receiver and a 

new Least Squares (LS) decoding scheme [33]. The current system is a 4×4 system (4 

transmit and 4 receive antennas) but can easily be extended to larger MIMO systems that 

achieve data rates in excess of 108 Mbps. 

 

 In this dissertation, two different basis technologies for the next generation of 

high speed WLANs are presented: OWSS and the new MIMO-STC-OFDM. The 

dissertation is organized as follows. Following the introduction the outline of this 

dissertation consists of five parts  

(1) Background on OWSS system, OFDM, MIMO Systems and STC (Chapter 2)  

(2) Medium Access Control in OWSS WLANs and Spectral Characteristics of OWSS. 

(Chapter 3 and 4)  

(3) Performance limits of OWSS based on a theoretical multi-level matrix formulation. 

(Chapter 5)  

(4) The new MIMO-STC-OFDM system with high spectral efficiency and high 

performance (Chapter 6).  

(5) Multipath Channel Modeling and Estimation for the new MIMO-STC-OFDM system. 

(Chapter 7).  

The first part given above provides detailed information about OWSS system and a 

background on OFDM, MIMO systems and STC. The last four parts contain the main 

contribution of the dissertation and include original research results. 
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Specific novel contributions of this dissertation in different chapters are listed below:  

(1) OWSS and MIMO-STC-OFDM are both presented as viable candidates for the next 

generation of high speed WLANs.  OWSS is a new modulation technique capable of high 

data rates without using multiple antennas at the transmitter and receiver. MIMO-STC-

OFDM on the other hand, achieves next generation data rates by combining transmit and 

receive diversity techniques with legacy OFDM systems.  

(2) A CSMA/CA based MAC protocol is proposed for OWSS to access the medium [28]. 

The frame format for OWSS data packets and MAC attributes of OWSS are also 

proposed. Performance of OWSS at the MAC layer in terms of saturation throughput and 

average delay is analyzed using a simple theoretical model.  

(3) The spectrum efficiency of OWSS is analyzed vis-a-vis OFDM. The OWSS passband 

spectrum is found to have 30-40% bandwidth advantage over OFDM for 54 Mbps 

operation [26]. OWSS also readily extends to higher bit rates, such as 108 Mbps, in a 

bandwidth efficient manner.  

(4) A novel pre-distortion scheme [70] was developed to compensate for the passband 

spectral regrowth due to PA non-linearity. At 6 dB backoff in 108 Mbps OWSS, this 

scheme yields an improvement of 10 dB in spectral regrowth distortion levels. 

 (5) A Forward Equalizer - Decision Feedback Equalizer (FE-DFE) structure was 

originally proposed for the OWSS receiver. Towards this end, a novel multi-level matrix 

formulation [27] has been conceptualized to model the entire OWSS transreceiver and 

establish its fundamental theoretical performance (BER) in random multipath fading 

channels. This formulation can also be used for channel estimation, i.e. to estimate the 

optimum channel equalizer (weights of the FE and DFE)  for these channels.  

4
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(6) A new MIMO-STC-OFDM system [33] has been developed that achieves both high 

spectral efficiency and high performance over frequency selective channels. This new 

system was achieved combining MIMO-OFDM, group coding antennas using STC, array 

processing at the receiver (for interference suppression) and new LS decoding technique.  

(7) A highly effective channel equalization technique [34] in the time domain has also 

been developed for the new MIMO-STC-OFDM system. The multipath channel model 

for the system is also conceptualized.  

 

The dissertation is organized in detail as follows. It starts by providing a detailed 

background for both OWSS and MIMO-STC-OFDM in Chapter 2. OWDM and its 

combination with Spread Spectrum (SS) concepts to synthesize OWSS pulses is studied. 

The inherent advantages and special nature of the OWSS pulses is discussed. The 

corresponding OWSS signaling system is presented and a powerful adaptive equalizer 

structure in the OWSS receiver [27], [29] which combats multipath fading is described. 

In the second part of the chapter 2, a review of OFDM, MIMO systems and STC, key 

concepts that serve as a basis for the new MIMO-STC-OFDM system is provided.  

 

 Chapter 3 looks at the Medium Access Control (MAC) layer in OWSS WLAN 

system. OWSS will use a Carrier Sense Multiple Access with Collision Avoidance 

(CSMA/CA) [40] based MAC protocol similar to the IEEE 802.11a [4] standard to access 

the medium. A frame format for OWSS data packets in the MAC layer and MAC 

attributes of OWSS in terms of DCF parameters are proposed. Using a simple theoretical 

model called Bianchi’s Model [41], [42], an analysis of the performance of OWSS in the 

5
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MAC layer in terms of two key parameters, system throughput and average packet delay 

is carried out. 

 

 Chapter 4 analyzes the excellent spectral characteristics of the OWSS signal and 

studies its bandwidth efficiency as compared to OFDM. It is shown that the theoretical 

baseband spectrum of OWSS is perfectly flat, and the passband spectrum offers a 30-40% 

bandwidth advantage [26], [31] over 802.11a OFDM for 54 Mbps operation. OWSS also 

readily extends to higher bit rates, such as 108 Mbps, in a bandwidth efficient manner. 

The effect of spectral regrowth in the OWSS passband spectrum was analyzed using the 

Rapp Model. This spectral regrowth can be compensated to a large extent using a novel 

pre-distortion scheme. At 6 dB backoff in 108 Mbps OWSS, this scheme yields an 

improvement of 10 dB in the spectral regrowth distortion levels. 

  

Chapter 5 explores the fundamental limits to OWSS performance. Towards this 

purpose, a multi-level matrix formulation [27] is employed to model the signal 

processing system. The total minimum mean-square error (TMSE) for the Forward 

Equalizer – Decision Feedback Equalizer (FE–DFE) structure [27], [29], [30] is derived 

in a closed form, and thereupon minimized rigorously to provide the optimum equalizer 

weights and corresponding theoretical BER performance of the OWSS system. 

Simulation results on a 108 Mbps system demonstrate the effectiveness of this theory and 

prove that OWSS is capable of excellent performance and high spectral efficiency in 

multipath fading channels. 

 

6
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 Chapter 6 introduces the new MIMO-STC-OFDM system [33]-[35] that achieves 

both high spectral efficiency and high performance over frequency selective channels. 

This is accomplished by a combination, or layering [36] of MIMO OFDM [12]-[16], 

group transmit signals and antennas [37], space time coding [38], [39], array processing 

[37] at the receiver and a new Least Squares (LS) decoding scheme [33]. The new system 

is compared with other MIMO OFDM systems and simulation results validate the 

superior performance of the new system.  

 

 Chapter 7 presents an efficient new time domain channel estimation [34], [35] 

formulation for the new high performance MIMO STC-OFDM system, which uses high 

power QPSK symbols. Four matrix-vector multiplications and a single data frame enables 

high accuracy estimation of all sixteen MIMO channels in the 4 × 4 system.  

  

 Chapter 8 provides a list of novel contributions of this dissertation, concluding 

remarks and suggestions for future research in OWSS and MIMO-STC-OFDM.  

 

 

 

 

 

 

 

 

7
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CHAPTER 2 

BACKGROUND 

 

2.1 Background on OWSS Systems 

OWSS, or Orthogonal Wavelet Division Multiplexed - Spread Spectrum [19]-[22] 

is a new class of pulses and a corresponding signaling system for next generation high 

speed WLANs and targets bit rates upwards of 108 Mbps. These pulses are generated 

through a combination of Orthogonal Wavelet Division Multiplexing (OWDM) [24] and 

Spread Spectrum (SS) concepts [25]. The OWSS system has significant advantages over 

current signaling schemes like OFDM [6]-[8], TDMA [1] and even OWDM. Some of 

these unique advantages are : (1) single or multiple user capability at the PHY or MAC 

layer (2) effective multipath channel equalization due to wide time and frequency support 

(3) continuously pipelined operation (in contrast to OFDM) (4) high bandwidth 

efficiency, which is about twice for DS-CDMA [43] (assuming rectangular chips for DS-

CDMA). As mentioned earlier, OWSS pulses are derived from OWDM pulses by 

spreading them in the wavelet domain [23], using a suitable family of PN codes [25]. 

Therefore, let us begin with a discussion on OWDM pulses.  

 

2.1.1. Orthogonal Wavelet Division Multiplexing (OWDM) 

 OWDM is based on the concepts of orthogonal multipulse signaling [44]. 

Consider that the pulses φm(t), m = 0, 1, . . . , M − 1, form an orthonormal set over a 

8
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certain period of time and that each pulse is orthogonal to itself shifted by non-zero 

integer multiples of a certain interval T [44]. Each basis pulse φm(t),  can then serve to 

create a ‘virtual’ channel over which the symbol am is carried. The vector of symbols A = 

[a0, a1, . . . , aM−1]
T is called a supersymbol, and the interval T = MTs  as the 

supersymbol/block interval, where Ts is the basic symbol interval . Then the base band 

transmitted signal becomes 

)iTt(A)iTt(a)t(s
i

T
i

i

1M

0m
mm,i  













                                                       (2.1) 

                                                  

At the receiver, symbol and block timing extraction is performed, and the 

received signal is correlated with φ(t – iT) to detect the nth supersymbol at time iT 

(actually at time iT + τ, where τ denotes the optimum timing phase [44]). Since CMOS 

VLSI implementation of signal processing techniques is often less complicated and 

economical in the discrete time domain, discrete time formulation of orthogonal 

multipulse signaling will be used from now on. The discrete time orthogonal multipulse’s 

are φm(n), m = 0, 1, . . . , M − 1,  and the corresponding transmitted orthogonal multipulse 

signal becomes  

 )iMn(A)iMn(a)n(s
i

T
i

i

1M

0m
mm,i  













                                                (2.2) 

However for convenience and simplicity, the variable t will be used to denote both the 

continuous time variable as well as the discrete time sample index. Also, M and T will be 

used interchangeably to denote the block length. 

 

9
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Orthogonal multipulse signaling has the following distinct advantages:  (1) 

potentially less sensitive to multipath fading (2) potential to reach channel capacity and 

countering selective fading (3) potential for multiplexing at the physical layer. For a more 

detailed review of OWDM pulses, refer to [24]. The OWDM system uses wavelet pulses 

as the basis pulses in orthogonal multipulse signaling.  

 

2.1.2 OWDM Pulses from Full Tree Wavelet Filters 

The use of basis functions in the analysis of signals modulated by transforms is a 

time proven concept. For example, in the Discrete Fourier transform (DFT) [45] the basis 

set consists of all complex sinusoids of the form ejn  where can take on any real value. 

In recent years attention has been focused on basis sets generated from wavelets [23]. 

The OWDM basis sets are generated through the process of scaling or shifts from a single 

parent function, called the mother wavelet (t). Appropriately, then, the basis pulses are 

indexed by two indices x and y, signifying scale and shift respectively. Thus, the basis 

pulses are of the form 

 yt22 x2/x
y,x                                                                                        (2.3) 

 

A three stage (M= 23= 8 input nodes) synthesis tree for generating the wavelet 

pulses )(ti , which serve as the basis pulses, is shown in Figure 2.1. More generally, for 

an s-stage tree there would be M = 2s input nodes. The impulse response from the i-th 

input node to the output node is denoted as 1.,..,1,0   where),(  Miti . The prototype 

type filter G0 can be a Haar wavelet [23], a Daubechies filter [23], or other [45] – [48]. 

10
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As an example, consider the well-known Haar wavelet   211   and its 

scaling function    211 . Either of them or both can be used to create the OWDM 

basis set. In terms of implementation this is frequently done through the tree structure [8]. 

To illustrate, let us define the high pass and low pass filters as g0 = [1 1] and g1 = [1 –1]. 

Both are identical to the mother wavelet and its scaling function, except they are not 

normalized. In the Figure 2.1, several different sampling frequencies are observed. The 

input sampling frequency Fs will be doubled in each stage to become an output sampling 

frequency of 8Fs. The z-transforms G0(z) and G1(z) are shown as the filter transfer 

functions. 

 

 

Figure 2.1 OWDM Synthesis Tree 
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In the figure, a member of the OWDM basis set can be generated by applying a 

unit pulse at only one input node while all other nodes receive a zero input. Thus, for 

example if input node 5 is driven by a unit pulse, and all other input nodes are held at 

zero, the output turns out to be φ5 = [1 –1 1 –1 –1 1 –1 1]. Here is a general formula: 

consider an arbitrary leaf node, say node n = [i j k] (binary address). Then the transfer 

function from this node to the output node is Pi,j,k = Pi(z)Pj(z
2)Pk(z

4), where for node 5, 

Pi(z) = G1(z), Pj(z) = G0(z), and Pk(z) = G1(z). The tree of Figure 2.1 can be represented 

by a equivalent tree as shown in Figure 2.2. It can be shown that the pulses generated in 

this set are orthogonal, and in fact if the normalization factor 1/√2 was not ignored, these 

pulses would be orthonormal. Hereafter the normalization factor is included so that the 

set of wavelet pulses {φ0, φ1, .... , φM–1} will be doubly orthonormal, i.e. the pulses satisfy 

the generalized Nyquist criterion [23]. 

nkiki )nTt(),t(   for  i, k=0,1,.., M-1 and all n.                              (2.4) 

Also, it can be shown that these pulses are power complementary, i.e.,  

 1)f(
M

1 M

1m

2

m 


                                                                                            (2.5) 

The structure shown in Figure 2.1 and 2.2., can be used for other wavelets as well. Thus, 

the synthesis tree can generate eight Daubechies wavelet pulses φi(t), i = 0, …, 7 if the 

Daubechies scaling function [23] and the corresponding mother wavelet [23] are used as 

the filters g0 and g1. 

  

In this dissertation, the OWDM pulses generated by through a Daubechies filter 

as the prototype G0(z) are used. An example family, generated from a 4-tap Daubechies  

12
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filter G0(z) = [0.3415, 0.5915, 0.1585,−0.0915] and a 2-stage tree, is given in Table 2.1. 

Note that each pulse is normalized to unit energy. Actually as shown originally in Figure 

2.1 , the tree structure shown can be used to synthesize the transmitted OWDM signal s(t) 

of (2.2) and (2.3). By applying the ith supersymbol Ai = [a0,i, a1,i, . . . , aM−1,i]
Tat instant 

iM, and of course repeating this process for all i, it is easily seen using superposition that 

the output signal from the synthesis tree is (2.1).  The synthesis tree is a multi-rate 

multiple input single output (MISO) [38] linear filter. The corresponding analysis trees at 

the receiver will also be multi rate linear filter, but of the single input multiple output 

(SIMO) type [38]. 

 

2.1.3 OWSS Pulses 

While the OWDM pulses do satisfy the generalized Nyquist criterion, they are not 

broadband and are just as susceptible to deep fades, as are the OFDM pulses. 

Overcoming this deficiency, the OWSS pulses are derived from OWDM pulses φm(t) by 

spreading them in the wavelet domain through a suitable family of PN codes. The OWSS 

transmit signal synthesizer and receiver signal analyzer is illustrated in Figure 2.2 and 

2.3. The new broadband OWSS pulse  is given by 

)t(c)t(c)t( T)i(
1M

0m
m

)i(
m

)i(   




                   (2.6) 

Here c(i), i = 0, . . . , M − 1, are the code vectors which perform the spreading in wavelet 

domain. The superscript connotes the ith pulse, which is assigned to the ith user. In this 

dissertation, Hadamard codes [25] will be used. Using Hadamard codes, it can readily be 

shown that the OWSS pulses, ψ(i)(t ), i = 0, . . . , M − 1, are also doubly-orthogonal.  
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Figure 2.2 Block Diagram of OWSS Transmitter (For k-th User) 
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Figure 2.3 Block Diagram of Correlator Bank and Summer at OWSS Receiver  

(For k-th User) 

 

That is, they (like OWDM pulses) satisfy the generalized Nyquist criterion. 

nkiki )nTt(),t(   for  i, k=0,1,.., M-1 and all n.                              (2.7) 

Thus, these pulses provide a means for creating M virtual channels. Also, it can be shown  
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that these pulses are power complementary, i.e.,  

 1)f(
M

1 M

1m

2

m 


                                                                                             (2.8)   

Most importantly, they are broadband. That is, each pulse in the family of M pulses 

broadband [1]. For M = 4 and M = 8, the corresponding Hadamard code matrices are 

given by 
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2

1
H

8

4

                                                       (2.9) 

 

For the OWDM pulses of Table 2.1 and code H4 of (2.9) , the OWSS pulses are 

listed in Table 2.2. It is important to remark that these pulses need not be generated on-

line; they can be computed off-line and conveniently stored in a ROM. 
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Pulse 0 and its magnitude spectrum is shown in Figure 2.4. In the interest of 

e other three pulses are not displayed, but they generally have similar time and 

lation for Pulse 0 is shown in Figure 2.5, using 

ple-transmit pulse. The cross-correlation map of all 4 member pulses is 

ic scale. The actual matrix of cross-correlations is a 4 

atrix. To summarize, OWSS has the following properties : (1) the pulses 

 their spectrum, (2) the pulses are broad-time, since their time-

has an excellent autocorrelation behavior, and (4) the 

ogonal, so as to support multi-user operation. This excellent 

 channel fades. For a detailed discussion 

icial properties of OWSS pulses, refer to [19]-[22]. The set of 16 pulses 

SS synthesizer is illustrated in Figure 2.7. 

space, th

spectral behavior. The blockwise autocorre

a rectangular sam

shown in Figure 2.6 on a logarithm

x 4 identity m

are broadband as seen from

support is long, (3) each pulse 

pulses are mutually orth

behavior holds up even in the presence of deep

on the benef

synthesized by a four stage OW

Figure 2.4 A Typical OWSS Pulse and its Magnitude Spectrum 
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Figure 2.5 Autocorrelation of OWSS Pulse 0 
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Figure 2.6 Cross Correlation Map of 4 OWSS Pulses 
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Figure 2.7 OWSS Pulses M=16 from a 4 stage OWSS Filter Tree 

 

2.1.4 OWSS Signaling System 

 An overview of OWDM Spread-Spectrum (OWSS) transreceiver is illustrated in 

Figure 2.8 and a simplified ROM based system is shown in Figure 2.9. The training phase 

is not shown, during which a set of known samples s(t), previously stored at the receiver 

and produced by a set of known transmitted symbols, is used for training the channel 

equalizer [44]. The details of the transmitter block and the 'correlator and summer' block 

at the receiver were given in Figure 2.2 and 2.3. Here (t) is the set of the OWSS pulses, 

assembled in the form of a vector.  

19



www.manaraa.com

r(t)

Channel Equalizer

T
S

T
S

T

D
et

ec
t 

&
 D

F
B

 E
rr

or

Adaptation

s(t) p(t)

Symbols 
Out

 ^
a

n

Z
n

c (t) c (t)

a
n

TX
Corr 
bank, 
sum

*

 

Figure 2.8 OWSS Signaling System 

 

Referring to Figure 2.3 and Figure 2.8, the transmitted signal for the i-th user is 

)nTt(a)nTt(ca)t(s )i(

n

)i(
n

n

1M

0m
m

)i(
n

)i(
n

)i(   




                             (2.10)                         

where is the new OWSS broadband pulse for the i-th user. The received signal 

equals the sum of the signals received from all transmitters. For this discussion, assume 

ideal channel conditions without channel attenuation and multipath effects [1],[50]. Thus, 

at k-th receiver the received signal is 

)()( ti

                                                      (2.11) 



U

1i
i

)i(
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n
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1i

)i( )nTt(a)t(r)t(r 

Assuming perfect timing, the output of the k-th correlator in the OWSS receiver is 
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The inter symbol interference term (ISI) [1] is zero due to the impulsive nature of  

the autocorrelation of the OWSS pulses.  Also for the down-link case, all τi, are equal, so 

that the inter channel interference term (ICI) [1] is also zero. Thus the output of the k-th 

OWSS receiver correlator is 

                                                                                            (2.13) )k()k(
n

)k(
n Naz 

This means that except for the addition of Adaptive White Gaussian Noise (AWGN) [1], 

[44], the input to the decision device is the n-th symbol of the k-th user. Thus, the 

probability of symbol error would be the same as in the single user AWGN case for 

QAM symbols [1], [44].  

 

 Figure 2.2, 2.3 and 2.8 have provided a detailed structural realization of the 

OWSS transreceiver, however simpler realization is possible as illustrated in Figure 2.9. 

This is a ROM based design, where the S/P and P/S conversions have been omitted for 

simplicity. Here the PN code has already been imbibed in the transmit pulse (i)(t) for the 

i-th transmitter-receiver pair.. Also, Decision Feedback Equalizer (DFE) [44] has been 

added, which will be discussed in the next sub-section. Also note that the wavelet pulse 

set {(i)(t)}  is common to all users. It is only the PN codes that are different for each user 

pair, as signified by the superscript i in equation (2.10). 

 

2.1.5 Equalization in the OWSS Receiver 

To surmount the ISI introduced by a time varying multipath channel [1], [44], a 

powerful adaptive equalizer [44] structure has been developed for the OWSS system. The  
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Figure 2.9 Simplified ROM Based OWSS Signaling System 

 

baseband part of an OWSS receiver is shown in Figure 2.10. It deploys an adaptive 

Forward Equalizer (FE) and a Decision Feedback Equalizer (DFE), both of finite impulse 

response (FIR) form [45]. Not shown is the adaptation mechanism, which will not be 

discussed here but can be found in [29], [30]. The receiver also uses a correlator, a 

decision device, and an upsampler. Indeed, the output of the equalizer is correlated with 

an OWSS pulse, which is specific to the user, thus despreading it for detection. Note also 

that the correlator generates its output every Mth sample. Therefore, the decision device 

[1] and error computations operate at a lower rate than does the equalizer. Thus the 

OWSS receiver is a multi rate system [51]. Since the DFE operates at the same speed as 

the FE, an upsampler [45] is needed, as shown in the figure. Initially, the coefficients of 

the FE and DFE are obtained through a training phase (using a prestored sequence of 

symbols and the LMS [44] algorithm for update). Subsequently, the receiver goes into 

maintenance mode. Of course, the equalizer coefficients are updated in this mode as well. 

The training phase begins with an arbitrary set of equalizer weights. These weights tend 

to converge to minimize the Mean Square Error (MSE) [44]. The final weights obtained 

at the end of the training are then used to initialize the maintenance phase. As stated will  
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earlier, the theory of the adaptive equalizer, in particular the adaptation mechanism, will 

not be discussed here. Readers can refer to [26], [39] and [30] for further details.  
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Figure 2.10 Details of the Baseband Portion of the OWSS Receiver 

 

2.1.6 Bandwidth Estimate and Multiple Access Capability of OWSS 

 The transmission bandwidth of the 108 Mbps OWSS System will now be 

discussed. Let us assume a 108 Mbps gross bit rate, of which 8 Mbps is to be set aside for 

overhead. A 64QAM modulation [44] is assumed, so that the symbol rate becomes Rs = 

108/log216 = 108/6= 18 Msps. For M wavelet channels the symbol rate on each channel 

becomes Rsc= 18/M Msps with a corresponding super-symbol interval T = M/18. Then 

the bandwidth of each of the underlying M wavelets is Δf = 18/M MHz. Correspondingly, 
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the baseband bandwidth becomes BWBB = (M)( 18/M) MHz. Finally, the transmission 

bandwidth is given by BT = (18)((M+l)/M). Due to the overlap between the spectra of the 

wavelet pulses, the bandwidth expansion takes place only for the boundary wavelets, 

giving rise to the factor (M+l)/M. Thus For M=4, T=3.5555 μs and BT = 18.28125 MHz. 

For M=8, T=0.44444 μs and BT = 20.25 MHz. 

 

 As mentioned earlier the OWSS scheme can be used for multiple access, from a 

high single-user data rate to various shades of multi-user and correspondingly reduced 

data rates. Denote the overall system bit rate R. Then any of the combinations, U = 1, U = 

2, U = 4, …, U = M can be incorporated. For example, if the number of users is U = 8, 

the bit rate for each would be R/8 and the number of codes allocated to each M/8; 

needless to say, M should be chosen to be greater than or equal to 8 (e.g., 16). It is useful 

to remark that in the single user case, random access sharing of the channel could well be 

done using CSMA/CA [40] at the MAC layer. Thus, the term single user must be 

interpreted carefully. It simply means that only a single user can access the bandwidth at 

a time (whereas with U = 8, up to eight users can access the channel simultaneously). 
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2.2 Background on MIMO-STC-OFDM 

The prevailing 54Mbps WLAN standards, 802.11a/g [4], [5] are based on OFDM 

[6]-[8]. Next generation WLAN standards are also expected to be based on OFDM and 

the Industry is specifically interested in Multiple Input Multiple Output (MIMO) systems 

[9] – [16] which are compatible with OFDM, namely current legacy systems. This would 

allow reuse of functionality and existing standard protocols. A high data rate extension 

802.11 n targeting bit rates of over 100 Mbps is due in 2009 and will probably combine 

concepts of OFDM with Multiple Input Multiple Output (MIMO) algorithms. A novel 

MIMO-STC-OFDM system [33] – [35] has been developed which is capable of targeting 

bit rates upwards of 108 Mbps. This system combines basically combines OFDM 

technology with Space Time Block Coding (STBC) [38], [39], [52], [53] in a MIMO 

environment. We begin with an analysis of OFDM.  

 

2.2.1 Background on OFDM 

 In early systems high data rates of the time were obtained by achieving parallel 

transmissions of data the frequency domain. This was achieved by dividing the total 

signal frequency band into non-overlapping frequency subchannels or subcarriers, a 

technique called Frequency Division Multiplexing (FDM) [ 44]. FDM however was 

spectrally inefficient due to the use of guard spaces to eliminate ICI. A more efficient use 

of the spectrum can be achieved if the subchannels in FDM are able to overlap. This 

would however require the subchannels to be mutually orthogonal and this was the basic 

concept behind OFDM. OFDM is a multi carrier (MC) technique [44], that operates with 
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specific orthogonality constraints between the subcarriers. Due to this, OFDM achieves 

high spectral efficiency.  

 In OFDM the subcarrier pulse is chosen to be rectangular and number of 

subcarriers is selected to be a power of 2. This has the advantage that the pulse shaping 

and modulation can be done by a simple inverse discrete fourrier transform (IFFT) [5]-

[8], resulting in remarkable reduction of hardware complexity. A simple baseband 

OFDM transreceiver is illustrated below in Figure 2.11. 

 

Figure 2.11 Simple Baseband OFDM Transreceiver 

 

OFDM converts serial data stream X(n) into parallel blocks of size K (where K is the 

number of subcarriers), and uses IFFT to obtain time-domain signal x(n). Before 

transmission, the inverse FFT (IFFT) described by matrix FH to applied to the QAM 

symbols, to obtain 

(n)XF(n)x H                                (2.14) 

 where F is a K× K FFT matrix. 
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 Let h(l), l=0,…,L be the chip rate sample discrete-time baseband equivalent Lth 

order FIR channel between the transmit and receive antenna. Knowledge of the channel is  

not required, except for the upper bound L on its maximum channel order. In order to 

eliminate the inter-block interference (IBI) caused by the FIR channel, the cyclic prefix 

(CP) of length L is inserted at the beginning of x(n) which is discarded at the receiver.  

 

Time domain OFDM signal is cyclically extended to mitigate the effect of time 

dispersion [5]-[8]. The length of cyclic prefix (CP) [5] has to exceed the maximum 

excess delay of the channel in order to avoid IBI. Basic idea of cyclic extension is to 

replicate part of the OFDM time-domain symbol from back to the front to create a guard 

period. As long as maximum excess delay is smaller than the length of the cyclic 

extension, the signal distortion stays within the guard interval, which is removed later at 

the receiver. Hence, ISI is prevented at the expense of a spectral efficiency loss. 

 

The CP insertion can be described by P = [IP
T  IK

T], where IP is formed by the last 

rows of the K×K identity matrix I. The operation of discarding the first L receiver 

symbols in the receiver can be described by the matrix Q =[0K×L IK]. The FIR channel is 

described by the (K+L)×(K+L) Toeplitz matrix Hi with the (k,l) entry h(k-l).Let G=PHQ 

denote the equivalent channel matrix in the receiver after eliminating the IBI.  The K×1 

IBI-free received symbol block y(n) is given by 

(n)wQ(n)XGF(n)y H                                                                                     (2.15) 

is the received symbol block from the transmit antenna. w(n) is the AWGN vector.  
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Given y(n), the FFT described by the matrix F is performed on y(n) to obtain           

(n)W(n)XDQw(n)F(n)XD(n)yF(n)Y                (2.16) 

where D is the diagonalized equivalent channel matrix by pre- and post-multiplication of 

the circulant matrix G with F and FH. The diagonalized channel matrix can now be 

equalized by the Zero Forcing (ZF) [44] approach and fed to symbol decision device like 

a slicer to recover the QAM symbols at the receiver.  

In the OFDM transmitter, the sub-carriers at the ends of the spectrum are usually 

set to zero in order to simplify the spectrum shaping requirements at the transmitter, e.g. 

IEEE 802.11a [4]. These subcarriers are used as frequency guard bands and are referred 

as virtual carriers or null subcarriers in literature [4]. To avoid difficulties in D/A and 

A/D converter offsets, and to avoid DC offset, the center subcarrier falling at DC is not 

used as well. The power spectrum for a 54 Mbps 802.11a OFDM spectrum  is shown in 

Figure 2.12. The system has 64 sub-carriers, uses 64QAM modulation and number of 

sub-carriers that are set to zero at the sides of the spectrum is 11. In the figure the 802.11a 

OFDM spectrum has been simulated, the associated spectrum mask and spectrums 

provided by the 802.11a standard and Richard Van Nee. For a more detailed review of 

the OFDM and the 802.11a standard, refer to [4],[8].  

 

2.2.2 Background on MIMO and STC 

Physical limitations on wireless channels present a fundamental challenge to the 

reliability of wireless communications. Factors such as bandwidth limitations, 

propagation loss, time variance, noise, interference, offsets and multipath channel fading 

limit the capacity of the wireless channel making it a narrow pipe that has limited ability 
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accommodate the flow of data. Further challenges come from power limitation as well as 

size, shape and speed of devices in wireless portables. In order to achieve very high data 
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Figure 2.12 802.11a OFDM Passband Spectrum and Spectrum Mask 

 

rates on narrowband wireless channels, many antennas at both transmitter and receiver 

will be needed. Deploying multiple antennas at both the base and remote stations, i.e. 

Multiple Input Multiple Output (MIMO) [9], [10] systems, increases the capacity [11], 

[12] of wireless channels and information theory provides measures of this increase. 

MIMO technology has attracted significant attention in wireless communications, since it 

offers significant increases in data throughput and link range without additional 

bandwidth or transmit power. It achieves this by higher spectral efficiency (more bits per 

second per hertz of bandwidth) and link reliability or diversity (reduced fading). Because 

of these properties, MIMO is the current theme of international wireless research. 
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2.2.2.2 Basic Mathematical Model of MIMO Systems 

Consider a wireless communication systems with n transmit and m receive 

antennas where the channel between each transmit and receive antenna is quasi-static 

Rayleigh [1], flat and mutually independent. This is illustrated in Figure 2.13. If n is 

fixed, then the capacity increases only logarithmically with m. If m is fixed, the 

mathematics of outage capacity proves that there comes a point when adding more 

transmit antennas will not make much difference.   
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Figure 2.13 Basic MIMO System 

 

For instance, if there is one transmit antenna i.e. n = 1, then Foschini et al. [11] 

prove that the capacity of the system is a random variable of the form log2(1 + (x2m
2/2m) 

SNR) , where x2m
2 is a random variable formed by summing the squares of 2m 

independent Gaussian random variables with mean zero and variance one. This means  
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that by the strong law of large number in distribution, in the limit (x2m
2/2m) tends to 1. 

Practically speaking, for m = 4, (x2m
2/2m) ≈ 1, and the capacity is the familiar Gaussian 

capacity log2(1 + SNR) per complex dimension. Thus in the presence of one receive 

antenna, little can be gained in terms of outage capacity by using more than four transmit 

antennas. A similar argument shows that if there are two receive antennas, almost all the 

capacity increase can be obtained using transmit antennas 

 

If m increases and n ≥ m, then information theory [11], [12] shows that the 

capacity of the system increases at least linearly as a function of m. Therefore by using 

multiple transmitter and receiver antennas to create multiple-input multiple-output 

(MIMO) systems to obtain higher capacities. The number of degrees of freedom is given 

by the product n × m. 

 

Consider the wireless communication system with n antennas at the base station 

and m antennas at the remote. At each time slot t, signals are transmitted simultaneously 

from n transmit antennas. 

i
tc ,i 1,2,.......,n                                                               (2.17) 

n signals are transmitted simultaneously each from a different antenna and all these 

signals have the same transmission period T. The channel is assumed to be flat fading [1],  

and the path gain from transmit antenna i to receiver antenna j is defined to be hi,j . j
t is 

the noise for channel between transmit antennas and receive antenna j at time t. 

The path gains are modeled as samples of independent complex Gaussian random  
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variables with variance 0.5 per real dimension. The wireless channel is assumed to be  

quasi-static so that path gains are constant over a frame of length l and vary from one 

frame to another. The noise samples  are independent samples of a zero mean complex 

Gaussian random variable with variance n/(2 SNR) per complex dimension. 

 

At time t, t=1,2,3,..,l the signals received at antenna j, j=1,2,3,…,m is given by 

n
t t
j i , j i

i 1

r h c t
j



                                                                                      (2.18) 

 

Using matrices and vectors, the above relation can be expressed as 

        rt = Hct + t                                                                                                (2.19) 
 

where the received signal vector, transmitted signal vector, channel matrix and noise 

vector are expressed as 

1 2 m T
t t t tr ( r ,r ,....,r ) ; ;                    (2.20) 1 2 n T

t t t tc ( c ,c ,....,c ) 1 2 l T
t t t t( , ,...., )   

1,1 2,1 n,1

1,2 2,2 n,2

1,m 2,m n,m

h h ... ... h

h h ... ... h

: : : :H

: : : :

h h ... ... h

 
 
 

 
 
 
 

                                                                     (2.22) 

Mathematically MIMO transmissions can be seen as a set of m equations 

(received signals) with a number of n unknowns (transmitted signals). To solve a problem 

of m equations and n unknowns, m should be at least equal to n. If m = n, there exists a 

unique solution to the problem and if m > n, a solution can be found by performing a 
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projection using a least squares method, also known as the Zero Forcing (ZF) method. If 

m = n, ZF gives the unique solution.  

For (2.19), you can recover the transmitted signals by ZF and using a decision 

device (slicer).  In this case assume m = n and H is invertible, the ZF equalization [44] of 

the channel matrix can be carried out by multiplying both sides of (2.19) by the hermitian 

transpose HH. 

 
H H H H

H

ĉ H r H Hc H Ic H

ĉ c H

 



    

 
                                                          (2.23) 

The output of the ZF equalizer is fed to the slicer to recover the original QAM symbols. 

Minimum Mean Squared Error (MMSE) equalization [44] can also be used for better 

performance. 

 

2.2.2.2 MIMO Technologies 

MIMO technologies can be sub-divided into three main categories: (1) Precoding, 

(2) Spatial Multiplexing (SM) and (3) Diversity Coding. 

 

Precoding can be interpreted as multi-layer beamforming in a narrow sense. 

Beamforming is a signal processing technique used in sensor arrays for directional signal 

transmission or reception. In (single-layer) beamforming, the same signal is emitted from 

each of the transmit antennas with appropriate phase weighting (sometimes with gain) 

such that the signal power is maximized at the receiver input. The benefits of 

beamforming are to increase the signal gain from constructive combining and to reduce 

the multipath fading effect. The improvement compared with an omnidirectional 
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reception/transmission is known as the receive/transmit gain (or loss). In a wide sense 

precoding means that all spatial processing is done at the transmitter. When the receiver  

has multiple antennas, the transmit beamforming cannot simultaneously maximize the 

signal level at all of the receive antenna and precoding is used. Note that precoding 

requires knowledge of the channel state information (CSI) at the transmitter. 

 

Spatial multiplexing (SM) requires actual MIMO antenna configuration, i.e. multiple 

antennas at the transmitter and receiver. In SM, a high rate signal is split into multiple 

lower rate streams and each stream is transmitted from a different transmit antenna in the 

same frequency channel. If these signals arrive at the receiver antenna array with 

sufficiently different spatial signatures, the receiver can separate these streams, creating 

parallel channels for free. Spatial multiplexing algorithms like BLAST [56]-[58] are a 

very powerful technique for increasing channel capacity at higher Signal to Noise Ratio 

(SNR). The maximum number of spatial streams is limited by the lesser in the number of 

antennas at the transmitter or receiver. Spatial multiplexing can be used with or without 

transmit channel knowledge. 

 

Diversity coding techniques are used when there is no channel knowledge at the 

transmitter. In diversity methods a single stream (unlike multiple streams in SM) is 

transmitted, but the signal is coded using techniques called space-time coding [52], [53]. 

The signal is emitted from each of the transmit antennas using certain principles of full or 

near orthogonal coding. Diversity exploits the independent fading in the multiple antenna 
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links to enhance signal diversity. Because there is no channel knowledge, there is no 

beamforming or array gain from diversity coding. 

 

Combinations of the three different technologies are possible. Spatial multiplexing can 

also be combined with precoding when the channel is known at the transmitter or 

combined with diversity coding when decoding reliability is in trade-off. In this 

dissertation new MIMO-STC-OFDM system [33]-[35] is being presented combining 

concepts of MIMO systems, OFDM and STC. Hence the concepts of STC, especially 

Space Time Block Coding (STBC) will now be reviewed.  

 

2.2.2.3 Space Time Coding (STC) 

Space Time Codes [52], [53]  are basically of two types : (1) Space Time Trellis 

Codes (STTC) (2) Space Time Block Codes (STBC). In this dissertation STBC has been 

used and as such the terms STC and STBC are interchangeable. However from now on 

STC will be used to denote space time block codes.  

 

Space–time block coding is a coding technique used in wireless communications 

to transmit multiple copies of a data stream (generally QAM symbols) across a number of 

antennas and to exploit the various received versions of the data to improve the reliability 

of the communication. The transmitted signal traverses a  difficult environment with 

fading, scattering, reflection, refraction and is further corrupted by thermal noise 

(AWGN) in the receiver, which means that some of the received copies of the data will 

be 'better' or ‘less corrupted’ than others. This redundancy results in a higher chance of 

35



www.manaraa.com

being able to use one or more of the received copies to correctly decode the received 

signal. In fact, space–time coding combines all the copies of the received signal in an 

optimal way to extract as much information from each of them as possible. Originally 

proposed by Tarokh et al., these space–time block codes (STCs) achieve significant error 

rate improvements over single-antenna (SISO) systems. Their original scheme was based 

on trellis codes (STTC) but the simpler block codes were first utilized by Alamouti [39], 

and later by Tarokh et al. [38] to develop space–time block-codes (STBCs). STC 

nowadays primarily refers to STBC. STC involves the transmission of multiple redundant 

copies of data to compensate for channel fading and AWGN in the hope that some of 

them may arrive at the receiver less corrupted than others. In the case of STBC in 

particular, the data stream to be transmitted is encoded in blocks, which are distributed 

across space (transmit antennas) and time (time instant slots). While it is necessary to 

have multiple transmit antennas, it is not necessary to have multiple receive antennas, 

although to do so improves performance. This process of receiving diverse copies of the 

data is known as diversity reception.  

 A STC is usually represented by a matrix. Each row represents a transmission 

from an antenna over time and each column represents a time slot as shown below in 

(2.24). 

11 12 1T

21 22 2T

n1 n2 nT

      1      2      T

s s s1

s s s2

s s sn



 
 

 
 
 




   


                                                                                 (2.24) 

36



www.manaraa.com

Here, sij is the modulated symbol to be transmitted in time slot j from antenna i. There are 

to be T time slots and n transmit antennas as well as m receive antennas. This block is 

usually considered to be of 'length' T.  

 

The code rate of an STC measures how many symbols per time slot it transmits 

on average over the course of one block . If a block encodes k symbols, the code-rate is 

 
k

r
T

                                                                                                                (2.25) 

STCs as originally introduced, and generally studied as orthogonal. This means that the 

STC is designed such that the vectors representing any pair of rows taken from the 

coding matrix are  orthogonal. This results in simple, linear, optimal decoding at the 

receiver. Its most serious disadvantage is that all but one of the codes that satisfy this 

criterion must sacrifice some proportion of their data rate. The design of STC is well 

documented in literature and readers can refer to [52][53], for further details.  

 

Alamouti [39] invented the simplest of all the STC. It was designed for a two-

transmit antenna system and has the coding matrix: 

*
1 2

2 *
2 1

s s
C

s s

 
 
 

                                                                                     

where * denotes complex conjugate.This is a rate-1 code and it takes two time-slots to 

transmit two symbols. Using the optimal decoding scheme discussed below, the bit-error 

rate (BER) of this STC is equivalent to 2m-branch (2 receiver antennas) maximal ratio             
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combining (MRC). This is a result of the perfect orthogonality between the symbols after 

processing at the receiver there are two copies of each symbol transmitted and m copies 

received. 

Alamouti’s STC is a very special STC. It is the only orthogonal STBC that  

achieves rate-1. That is to say that it is the only STC that can achieve its full diversity 

gain without needing to sacrifice its data rate. Strictly, this is only true for complex 

modulation symbols. Since almost all constellation diagrams rely on complex numbers 

(QAM symbols) however, this property usually gives Alamouti's code a significant 

advantage over the higher-order STBCs even though they achieve a better error-rate 

performance. The significance of Alamouti's proposal is that it was the first 

demonstration of a method of encoding which enables full diversity with linear 

processing at the receiver. Furthermore, it was the first open-loop transmit diversity 

technique which had this capability. Subsequent generalizations of Alamouti's concept 

have led to a tremendous impact on the wireless communications industry. 

 

Higher STC for more than 2 transmit antennas have been designed. However 

none of them are full rate codes. For example, the maximum rate for 3 transmit antennas 

is ¾. One particularly attractive feature of orthogonal STCs is that maximum likelihood 

decoding can be achieved at the receiver with only linear processing. For further details 

on higher order STCs and decoding of STCs, refer to [38], [52], [53].  
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2.3 Conclusion 

 In this chapter, a background on the OWSS, MIMO systems, OFDM and STC has 

been provided. OWSS is a promising technology for the next generation of high speed 

WLANs due to the unique advantages it enjoys over current WLAN signaling schemes 

like OFDM. Another promising technology for the next generation of high speed  

WLANs is the combination of MIMO systems and OFDM. MIMO algorithms are 

generally narrowband and the combination of OFDM with MIMO can deal with the 

wideband frequency selective fading channels of the future.  
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CHAPTER 3 

MEDIUM ACCESS CONTROL IN OWSS WLANs 

 

3.1   Medium Access Control in WLANs 

The Medium Access Control (MAC) [59] protocol sub-layer, is the lower sub-

layer of the Data Link Layer (DLL) [59], specified as the second layer above the PHY 

layer in the seven layer OSI model [59]. In WLANs, the MAC Layer manages and 

maintains communications between the wireless stations (radio network cards and access 

points) by controlling and coordinating access to the shared radio channel and utilizing 

protocols that enhance the transfer of data packets over the wireless medium. The 

802.11a  [4] standard specifies a common MAC Layer, which provides a variety of 

functions to support the operation of different 802.11 PHY layer specifications, such as 

802.11a/g [4], [5] and the eagerly awaited 802.11n standard [17], [18], [60].  

 

The channel access control mechanisms provided by the MAC layer are generally 

known as a multiple access protocols. The multiple access protocols are broadly 

classified into circuit mode [59] (like FDMA, TDMA, CDMA etc.) or packet mode 

methods [59] (like CSMA/CA, Slotted ALOHA). Hybrids of these techniques are also 

frequently used. In wireless networks, especially 802.11 WLANs, the packet mode 

method called Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) [40] 

is the basic channel access protocol in the MAC layer.  
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OWSS offers multiplexing capability either at the PHY layer or at the MAC layer. 

The primary advantage of using the MAC layer approach is that users can transmit and 

receive data packets at the full system bit rate, which is this paper, is 108 Mbps. Thus 

efficient resource sharing can occur for bursty users. Towards this end, OWSS will use a 

MAC protocol similar to that of the 802.11 WLAN Standard. Called the distributed co-

ordination function (DCF) [4], it is a carrier sense multiple access with collision 

avoidance (CSMA/CA) scheme with binary slotted exponential backoff. 

 

3.2 CSMA/CA: The Basic Access Method 

The IEEE 802.11 standard [4], [5] uses CSMA/CA MAC protocol with binary 

exponential backoff algorithm to access the medium, called Distributed Coordination 

Function (DCF). DCF defines two methods, two way handshaking basic access (for 

broadcast frames) illustrated in Figure 3.1 and optional four way handshaking technique 

known as request-to-send and clear-to-send (RTS-CTS) technique, illustrated in Figure 

3.2. A summary of the two DCF access methods is given here. 

 

DIFS 

Busy Medium 

DIFS 

Defer Access 

Contention Window 

Back Off Window 

SIFS Slot Time 

Select slot and decrement 
backoff as long as medium is idle 

 

Figure 3.1 CSMA/CA 
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Figure 3.2 Four Way Handshake RTS-CTS Scheme 

 

The basic access method is a two-way handshaking technique. A station with a 

packet to transmit persistently senses the channel and waits until a idle period equal to a 

distributed interframe space (DIFS) is detected. After an idle DIFS, the station waits for a 

random backoff interval before transmitting. This is a collision avoidance feature, which 

minimizes the probability of collision with packets transmitted from other stations. DCF 

has adopted a very efficient exponential backoff scheme. The time after DIFS is slotted 

and a station can transmit only at the beginning of each slot time as shown in Figure 3.1. 

Slot time () is the time that a station takes to detect a transmission from another station 

and it depends on the physical layer. Slot time is the sum of the medium propagation 

delay, the receiver to transmitter turnaround time and the time taken to sense the state of 

the channel. A collision occurs only when two or more packets are transmitted in the 

same time slot. 
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At each packet transmission, the backoff time is uniformly chosen in the range 

(0,w-1). The, value w, called the contention window, at the first transmission attempt is 

equal to the minimum contention window CWmin. After each unsuccessful attempt, w is 

doubled, up to a maximum value CWmax =2mCWmin. CWmin, CWmax and m, the number of 

retry attempts are PHY-specific. The backoff interval is equal to the product of the 

selected random contention window CW and slot time. The backoff time counter is 

decremented as long as an idle channel is detected, frozen when the channel is sensed 

busy and reactivated again when the channel is sensed idle again for a time period more 

than DIFS. After the backoff timer expires, the station transmits the packet. Unlike 

CSMA/CD, CSMA/CA cannot detect a collision and has to rely on a positive 

acknowledgement (ACK) from the destination station to signal successful packet 

reception. At the end of a successfully transmitted packet, the destination station 

transmits ACK to the source station after a period of time called short interframe space 

(SIFS), which is shorter than DIFS. If the transmitting station does not receive the ACK 

within a specified ACK timeout, or it detects the transmission of another packet on the 

channel, it reschedules the packet transmission according to the above backoff scheme 

shown in Figure 3.3. 

 

DCF defines an additional four-way handshaking technique to be optionally used 

for a packet transmission, known by the name RTS/CTS shown in Figure 3.4. A station 

that wants to transmit a packet, waits for an idle DIFS and follows the backoff rules 

explained above, and then, instead of the packet, first transmits a special short frame  
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called request to send (RTS). When the receiving station detects an RTS frame, it 

responds, after a SIFS, with a clear to send (CTS) frame. If the CTS frame is correctly 

received, the transmitting station is ready to transmit its packet after a SIFS. 

 

The RTS/CTS scheme also handles the problem of system degradation due to 

hidden terminals. The RTS and CTS frames carry information regarding the length of the 

packet to be transmitted. This information can be read by all stations, which then update 

their network allocation vector (NAV). NAV contains specific information about the 

period of time the channel would be sensed busy. Thus a hidden station can suitably 

delay transmission and avoid collision, by detecting one of the RTS and CTS frames. The 

RTS/CTS scheme is very effective in terms of system performance for large packets, by 

reducing the length of frames involved in the contention process.  For a more detailed 

explanation of the Basic Access and RTS-CTS scheme refer to the 802.11a standard [4]. 
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Figure 3.3 Basic Access Mechanism 
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Figure 3.4 RTS/CTS Mechanism 

 

3.3   Performance Analysis of the Distributed Co-ordination Function 

 This analysis is based on Bianchi’s Model [41], [42]. The analysis is carried out 

as follows. First the behavior of a single station is analyzed using a Markov model [44], 

and two critical probabilities are obtained, which are independent of the DCF mechanism 

employed: stationary probability that the station transmits a packet in a generic slot time 

(q) and the probability that a transmitted packet collides (p). Then, by studying the events 

that can occur within a generic slot time, the saturation throughput of both Basic and 

RTS/CTS access methods can be expressed as function of the probability q. Finally the 

packet delay can be calculated based on the model above.  
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3.3.1 Markov Model 

Consider a fixed number of n contending wireless stations operating under 

saturation conditions. Let b(t) be the stochastic process representing the size of the back 

off window for a given station at slot time t (the time is stopped when the channel is 

sensed busy). The station transmits when the back off time reaches zero. At each 

transmission, the back off time is uniformly chosen in the range (0,w-1). At the first 

transmission attempt, w=W, namely the minimum back off window. After each 

unsuccessful transmission, is doubled, up to a maximum value 2mW.  The maximum 

number of retry attempts is m. Let Wi=2iW, where i lies in the range (0,m), is called 

“backoff stage,” and let s(t) be the stochastic process representing the back off stage 

(0,…,m) of the station at time t. 

 

The key approximation in Bianchi’s model is, that at each transmission attempt 

and regardless of the number of attempts at retransmission, the probability p that a 

transmitted packet collides is constant and independent of the state s(t) of the station (this 

is more accurate when W and n are larger). In this condition, it is possible to model the 

bi-dimensional process {s(t),b(t)} with a discrete-time Markov chain illustrated below in 

Figure 3.5.  
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In this Markov chain, the only non null one-step transition probabilities are 
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be the stationary distribution of the chain.                                
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Figure 3.5 Markov Chain Model for the Backoff Window Size  
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Owing to the chain regularities, the following relations hold  
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Let q be the probability that a station transmits in a generic slot time. As any transmission 

occurs when the back off window is equal to zero, regardless of the back off stage, it is 
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However in general, q depends on the conditional collision probability p. To finally 

compute the probability p, that a transmitted packet collides, note that p is the probability 

that, in a time slot, at least one of the remaining n-1 stations transmits. 

 p = 1 - (1 - q)
n-1                                                                                                 (3.6) 

 

Equation (3.5) and (3.6) represent a nonlinear system with two unknown’s p and q can be 

solved using numerical techniques.  

 

3.3.2 Throughput Analysis 

Given n active stations contend on the same channel, and each transmits with a 

probability q, the probability Ptr that there is at least one transmission in a considered slot 
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time is given by 

n
tr qP )1(1                                                            (3.7)                        

Given that a transmission has occurred the probability Ps, that the transmission is 

successful is given by 
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Let u be the random variable representing the number of consecutive idle slots between 

two consecutive transmissions on the channel 

1
1

 -
P
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tr

                                                                                                      (3.9) 

 

Finally the normalized system throughput S can be determined, defined as the 

fraction of time the channel is used to successfully transmit payload bits. As the instants 

of time right after the end of a transmission are renewal points, it is sufficient to analyze a 

single renewal interval between two consecutive transmissions, and express as the ratio 
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                                                (3.10) 

where E[P] is the average packet length, TS is the average time the channel is sensed 

busy because of a successful transmission, and Tc is the average time the channel is 

sensed busy by the stations during a collision. The times E[P], TS and Tc must be 

measured in slot times, as this is the time unit of E[u]. 
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To conclude the analysis, it remains only to specify the values TS and Tc . Let 

H=PHYhdr+ MAChdr be the packet header, and d be the propagation delay. For the 

basic access method it is 

              TS
B
 = H + E[P] + SIFS + d + ACK + DIFS + d 

             Tc
B
 = H + E[P*] + DIFS + d                                                                         (3.11)                        

where E[P*] is the average length of the longest packet payload involved in a collision, in 

the case all packets have the same fixed size, E[P*]= E[P] =P. Tc. is the time in which 

the channel is sensed busy by the non-colliding stations. For the RTS/CTS access 

method, 
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 d  DIFS  ACK d  SIFS E[P]..........
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R
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                            (3.12) 

 

3.3.3 Delay Analysis 

The packet delay is another critical parameter in performance evaluation of the 

MAC layer [12]. For this another probability Pa is calculated, the probability that a 

specific station in n active stations transmits successfully 

n
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                                                                                       (3.13) 

R is the number of attempts at resensing the channel and Tf the expected time between 

two consecutive attempts at channel sensing. Then  
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The average delay time equals the average renewal cycle time plus the successful 

transmission time for the packet.  

             D=R(Tf + E(u))+Ts                                                                                         (3.15) 

 

2.4   Performance of CSMA/CA MAC Layer in OWSS WLANs 

In this analysis a robust transfer of the header and the preamble has been adopted; 

i.e., the PHY preamble (96 bits) and header (32 bits) are BPSK modulated with the 

concomitant transfer rate of only 18 Mbps. The use of the strategy shown in Figure 3.6 

enhances the probability that even the far away stations receive the handshaking 

messages reliably so as to update their NAV (Network Allocation Vector) [4] for 

CSMA/CA access. Figure 3.6 also shows the inherent plumes of the OWSS pulses; as can 

be seen, all of these plumes are hidden except for the very last one.  

 

A system throughput and delay analysis was carried out for OWSS based on 

Bianchi’s Model. The numerical results are obtained according to the system parameters 

listed in Table 3.1. From the throughput  analysis in Figure 3.7, it is evident that for a 

large number of stations, the RTS-CTS scheme performs significantly better than the 

basic access scheme. For the basic access scheme the throughput has an exponentially 

decaying profile, whereas for RTS-CTS it is generally constant at about 66%. The  
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average packet delay time, plotted in Figure 3.8, is proportional to the number of stations 

when the number of stations is small. However, it increases rapidly for large number of 

stations. At 20 stations, the packet delay is around 5 ms for both RTS-CTS and basic 

access; at 50 stations it increases to 12.5 ms for RTS-CTS and 15 ms for basic access. 

 

 

 OWSS   Pulses  

BPSK modulation 64QAM  modulation 

DATA Header Preamble 

1 2 3 Plume 

1 Plume 

2 Plume 

18 Mbps 

108 Mbps 

N 

 

Figure 3.6 OWSS Frame Format 

Table 3.1 MAC Attributes of OWSS 

Attribute Value 

96 bits OWSS preamble 

OWSS header 48 bits 

160 bits RTS size 

CTS size 128 bits 

ACK size 112 bits 

272 bits MAC header 

SIFS time (SIFS) 2 μs 

9 μs DIFS time (DIFS) 

5 μs SLOT time () 

Retry Attempts (m) 5 

Payload 2312 bytes 

CWMIN (W) 32 
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Figure 3.7 System Throughput for 108 Mbps OWSS WLAN 
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Figure 3.8 Average Delay for 108 Mbps OWSS WLAN 
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3.5 Conclusion 

 The OWSS signaling system with bit rates of 108 Mbps and beyond is directed at 

the next generation of high speed WLANs. OWSS offers multiplexing capability both at 

the PHY and MAC layers. However, multiplexing at the MAC layer is more preferable, 

as it would enable full rate shared access of the bandwidth (in this case 108 Mbps) to 

bursty users. Towards this end, OWSS will use a CSMA/CA based MAC protocol similar 

to the IEEE 802.11a standard to access the medium. A frame format for OWSS data 

packets in the MAC layer and MAC attributes of OWSS in terms of DCF parameters are 

proposed. Using a simple theoretical model for performance analysis, the MAC layer of 

OWSS has indicated a saturation throughput of 66% and an average packet delay of 5 ms 

using RTS-CTS – for a moderate number of stations (say, less than 50).  
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CHAPTER 4 

SPECTRAL CHARACTERISTICS OF THE OWSS SIGNAL 

 

Unlike the pulses used in OFDM [6] and TDMA [1], the OWSS pulses have both 

a wide time support and a wide frequency support, thereby lending the transmitted signal 

to effective multipath equalization at the receiver. However intrinsic to the design of the 

transmission system is the specification of the bandpass filter at its front end and the need 

to meet the emission mask requirements. For both these specifications, the study of the 

spectral characteristics of the OWSS signal is critical. The spectrum of a WLAN 

transmission system is one of its most important characteristics.  It provides information 

about spectral leakages by the transmitted signal into adjacent bands. This chapter 

elaborates on the beneficial spectral properties of the OWSS transmitted signal. It shows 

that the baseband spectrum is perfectly flat, and that the passband signal requires a 

bandwidth 30-40% less than that required by OFDM. As an example, for 54 Mb/s 

operation, OWSS requires only 13 MHz bandwidth compared to 20 MHz for 802.11a 

OFDM [4], [5]. This is due primarily to the avoidance of overhead (prefix and channel 

coding), while still achieving BERs of 10−4 to 10−5 (at practical delay spreads of 50-100 

ns and SNRs of 19-22 dB), and a sharp rolloff of the spectrum. The analysis also 

confirms that the broadband nature of the OWSS baseband signal is preserved in the 

passband. This enables the OWSS system to transmit data successfully over a frequency  
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selective multipath channels [1] with deep fades, unlike comparatively narrowband  

systems like OFDM. OWSS also extends to higher bit rates such as 108 Mbps, in a 

bandwidth efficient manner.  

 

4.1 Baseband Spectrum of OWSS Signal 

Assuming only a single super-symbol for OWSS and that all M virtual channels 

are active. The corresponding baseband signal in the time and frequency domains are 

given by 
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Therefore the power of the baseband signal is   
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where IM is an identity matrix of size M×M and ζ2 Δ E | Ai |
2. For example, for 64QAM, ζ2 

= 42. Note that in (4.2)  the power complementary properties of the OWDM pulses is 

used, (see top trace of Figure 4.1), and the fact that the Hadamard [25] codes are 

orthogonal; indeed orthonormal if the code vectors are normalized to unit energy. In the  
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latter case, the factor M on the right hand side of (4.2) may be replaced by unity. Clearly, 

the baseband spectrum is flat, regardless of the value of M. A simulated spectrum is 

shown in the lower trace of Figure 4.1.   

 

It follows in an analogous manner that the theoretical baseband spectrum of the 

complete signal, with an infinite symbol stream, 
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is also flat. Here, the vector of symbols An  =  [An
(o)   An

(1)  · · ·  An
(M-1)

 ]
T  is called the n-th 

supersymbol.  

 

Figure 4.1. Baseband Spectrum of OWSS 

4.2 Passband Spectrum of the OWSS Signal 

In a typical WLAN system, the transmitted passband RF signal [44] is analog  

while the baseband signal is a discrete time signal generated by DSP [45]. Therefore the  
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baseband signal must be converted into an analog signal. The passband analog OWSS 

signal used for spectral analysis is given by 
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i cetstx )(Re)(
1

0

)(                                                                       (4.4) 

 

As passband modulation is performed by a complex analog carrier signal (with 

frequency fc), D/A conversion of the discrete time baseband OWSS signal is required. 

This can be achieved by means of a simple passband OWSS transmission system for 

spectral analysis, illustrated in Figure 4.2. This analog signal is produced through an 

upconversion process. Prior to upconversion, a pseudo D/A [45] conversion (upsampling 

by a factor U followed by low pass filtering) of the discrete time baseband signal is 

performed. Thereupon, in the simulations for the passband spectrum, an FFT is 

performed, its magnitude-square calculated, then smoothed (using a moving average filter 

[45] of length W as shown in Figure 4.3), and finally shifted to the carrier frequency (for 

example, 5.785 GHz). 

 

s S 

 

 

Figure 4.2 Simple Passband OWSS Transmission System for Spectral Analysis 
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Figure 4.3 Simulated Baseband and Passband Spectrum of OWSS Signal 

 

4.2.1 Passband Spectrum of 108 Mbps OWSS 

  The 108 Mbps OWSS system has a sampling rate of 18 Msps and uses a 

64-QAM constellation. The passband spectrum of the 108 Mbps OWSS transmitted 

signal is shown in Figure 4.4. The spectral plot is obtained for M=64 (all virtual channels 

or users active). For D/A conversion, a combination of upsampling, by U = 8, JIF 

filtering [61] (LPF), followed by smoothing (W = 200) is used. The solid line shows the 

passband spectrum and the suggested emission mask is shown by the dotted line. The 

response of the filter was finally shifted to the carrier frequency of 5.785 GHz. The 

OWSS spectrum for 108 Mbps has a -3dBr passband bandwidth of about 16 MHz, -10 

dBr bandwidth of 18 MHz and -40dBr bandwidth of 25 MHz. Also notice the sharp roll 

off at the edges of the spectrum, indicating a low spectral leakage into adjacent bands. An 

emission mask is also suggested, shown by a dotted line. The emission mask has been  
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specified generously to account for nonlinearities and impairments. However certain 

changes may be  necessary to account for PA nonlinearities. The resultant spectrum 

bandwidth and suggested emission mask is tabulated in Table 4.1. 

 

Figure 4.4 Spectrum and Emission Mask for 108 Mbps OWSS Signal 

Table 4.1 Spectrum and Emission Mask BW of 108 Mbps OWSS Signal 
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4.2.2 Bandwidth Efficiency of OWSS vis-à-vis OFDM 

Now the bandwidth efficiency of OWSSS vis-à-vis OFDM will be 

compared by studying the passband spectrum and emission masks of both the signaling 

schemes for 54 Mbps operation. Figure 4.5 compares the passband spectra and emission 

masks of 60 Mbps (10 Msps sampling rate and 64QAM modulation) OWSS and 54 Mbps 

802.11a OFDM system. 60 Mbps OWSS gives a net rate of about 54 Mbps with adaptive 

loading (use of lower constellation training symbols for equalization in poor channels) 

and a comparable BER. The spectral plot for OWSS shown in Figure 1.5 is obtained for 

M=64 (all virtual channels active). For D/A conversion, a combination of upsampling, by 

U = 8, 129 tap JIF filtering [61] (LPF), followed by smoothing (W = 200) is used. The 

spectrum and emission mask for 802.11a OFDM is specified in the standard. An an 

emission mask for 54 Mbps OWSS is also suggested. As is evident from the plots, OWSS 

spectrum requires only 9.5 MHz for OFDM’s 16.3 MHz at –3 dBr and 10.3 MHz for 

OFDM’s 17 MHz at –10dBr. This represents a spectrum bandwidth efficiency of about 

40% for OWSS over OFDM. At -10 dBr, OWSS emission mask requires only 12 MHz 

bandwidth as compared to 20 MHz for 802.11a OFDM emission mask [5], [6]. This 

represents a significant bandwidth advantage of roughly 40% for both the spectrum and 

the emission mask. See Table 4.2 and Table 4.3 for details. This advantage arises due to 

(1) the avoidance of the prefix, channel coding, and guard zero-carriers in OWSS and (2) 

a compact brick-wall like characteristic of the baseband OWSS spectrum.  PA non-

linearities and other impairments such as timing and carrier phase errors have been 

ignored in this simulation, though the emission mask for 54 Mbps OWSS has been 

defined generously to account for such impairments.  
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Figure 4.5 Comparison of OWSS and 802.11a OFDM. 

 

Table 4.2 Comparison of 54 Mbps OWSS and 802.11a OFDM Spectrums 
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Table 4.3 Comparison of OWSS and 802.11a OFDM Emission Masks 
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4.3 Compensation of PA Non-Linearity in OWSS WLAN systems 

 PA nonlinearity in the transmitter leads to spectral broadening in the passband 

which can exacerbate adjacent channel interference [71]. This spectral regrowth depends 

on the level of output backoff and can severely affect the performance of the system. 

Backoff [72] is an important parameter for a practical power amplifier to attain an 

acceptable level of out of band radiation. Backoff is used to shift the operating point of a 

non-linear PA so as to operate it in the linear (actually, less nonlinear) region. To 

simulate the PA, a Rapp Model [72] is used for AM/AM conversion given 

by   ppAAAf 2
1

21)(  where A is the input amplitude. A good approximation to 

existing amplifiers is obtained by choosing p in range of 2 to 3. We chose p=2.2. Figure 

4.6 illustrates the effect of PA non-linearity on the passband spectra of 108 Mbps (18 

Msps sampling rate, 64 active users, 64QAM modulation and smoothing window  

W=200) OWSS. The figure also shows the spectral regrowth for backoff values of -10dB,  
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-7dB and -5dB on the 108 Mbps OWSS spectrum. It is observed that for -6 dB backoff, 

any significant distortion occurs only at -28 dBr. Notice that the 108 Mbps OWSS 

bandwidth has broadened from 22 MHz (linear) to 26 MHz (6 dB backoff) at -30 dBr, 

and from 26 MHz (linear) to 54 MHz (6 dB backoff) at -40 dBr.  

 

Figure 4.6 Passband 108 Mbps OWSS spectrum with PA Non-linearity using Rapp Model 

 

To compensate for this spectral regrowth, a novel pre-distortion [70], [73] scheme 

is employed based on the inverse function [70] of the Rapp PA Model which is illustrated 

in Figure 4.7. The analog OWSS signal is normalized and appropriate backoff is applied. 

The magnitude and phase are extracted from the signal and the magnitude is clipped (if 

required) and passed through the inverse Rapp function model given by 

  ppAAAg 2
1

21)( . The pre-distorted magnitude is then combined with the phase to 

get the pre-distorted OWSS signal. This signal is then modulated by a carrier frequency  

64



www.manaraa.com

and the Rapp model f(A) is applied to simulate the effect of PA nonlinearity. Figure 4.8 

shows the effect of pre-distortion on the OWSS signal for 6 dB backoff. As can be seen, 

with compensation (using pre-distortion) any significant distortion occurs only at -38 dBr 

as compared to -28 dBr without compensation. This represents a significant improvement 

of 10 dB [70] in spectral regrowth distortion levels in the passband for the 108 Mbps 

OWSS signal. The 108 Mbps OWSS bandwidth with 6 dB backoff shows no broadening 

at -30 dBr and has broadened to only 30 MHz at -40 dBr, compared to 54 MHz (without 

pre-distortion).  

 

 

Figure 4.7 Novel Pre-distortion Scheme for PA Non-Linearity Compensation 
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Figure 4.8 Compensated 108 Mbps Passband Spectrum using Pre-Distortion 

 

4.4 Conclusion 

 OWSS can avoid substantial overhead penalties through the elimination of the 

prefix, the guard zero-carriers, and channel. coding, while still providing a desired BER 

performance at practical SNRs. It was shown that the theoretical baseband spectrum is 

perfectly flat, and the passband spectrum offers a 30-40% bandwidth advantage over 

802.11a OFDM. OWSS readily extends to higher bit rates, such as 108 Mb/s, in a 

bandwidth efficient manner. PA nonlinearity can lead to spectral regrowth in the 

passband spectrum of the OWSS signal. This spectral regrowth which increases with the 

output backoff level, can be compensated to a large extent using a pre-distortion scheme 

based on the Rapp model. At 6 dB backoff in 108 Mbps OWSS, this scheme yields an 

improvement of 10 dB in spectral regrowth distortion levels. 
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CHAPTER 5 

PERFORMANCE LIMITS OF THE OWSS WLAN SYSTEM 

 

OWSS WLAN System is based on a new family of pulses which have both a wide 

time support and a wide frequency support, and is 30–40% more bandwidth efficient than 

OFDM. As a consequence of the wide frequency support, effective equalization [44] in a 

multipath environment [1] can be achieved using a Forward Equalizer–Decision 

Feedback Equalizer (FE–DFE) structure [29], [30] together with the LMS adaptation 

algorithm [29] as explained in Chapter 2. The purpose of this chapter is to explore the 

fundamental limits to OWSS performance. Towards this purpose, a multi-level matrix 

formulation [27], [31] is employed to model the signal processing system. The total 

minimum mean-square error (TMSE) [44] for the FE–DFE structure is derived in a 

closed form, and thereupon minimized rigorously. The TMSE governs the BER 

performance of the system, and is the sum of the MSE of the unequalized residual error 

and the MSE due to the channel noise amplified by the FE. Simulation results on a 108 

Mbps system will demonstrate the effectiveness of this theory. 

 

 Although a symbol-level formulation is generally performed in the equalization 

literature, the problem is formulated at the chip level for the following reason. The peak 

of the channel response can occur at instants that are not integer multiples of the super-

symbol interval, and therefore the best delay for optimum detection in the FE-DFE is not 
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necessarily an integer multiple of the symbol interval. A down-sampled low rate symbol-

interval formulation could actually easily miss the real optimum. Since the goal of this 

paper is to explore the fundamental limits to the performance, a chip-level formulation 

will be studied. The matter of reduced complexity can be addressed in the future. 

 

5.1 Multi Level Matrix Formulation of OWSS Receiver 

 The OWSS transmitter-receiver system is illustrated in Figure 5.1. The equalizer 

structure consists of two adaptive FIR [45] components: FE and DFE. LMS algorithm 

[29] is used as the adaptation mechanism to update the FE and DFE. The receiver also 

uses an OWSS correlator, an upsampler and a decision device (slicer) [44]. The output of 

the equalizer is correlated with a user specific OWSS pulse, thus generating a statistic for 

detection. Note also that the correlator generates its output every Mth sample, or chip. 

Therefore, the decision device and error computations operate at a lower rate compared to 

the equalizer. The OWSS Receiver is thus a multi rate signal processing system [51]. 

Since the DFE operates at the same speed as the FE, an upsampler is needed as shown in 

the figure. Initially, the coefficients of FE and DFE are obtained through a training phase 

(using a previously stored sequence of symbols, and the LMS algorithm for update). 

Subsequently, the receiver goes into a maintenance mode. Of course, the equalizer 

coefficients are updated in this mode as well. The training phase begins with an arbitrary 

set of equalizer weights. These weights tend to converge so as to minimize the MSE. The 

final weights obtained at the end of the training are then used to initialize the 

maintenance phase. 
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Figure 5.1 OWSS Transreceiver System 

 

After the FE-DFE, the equalized output is fed to the slicer to recover the QAM symbols. 

To minimize its receiver BER, the TMSE (Total Mean Square Error) needs to be 

minimized, which is the subject of the discussion below. The TMSE governs the BER 

performance of the system, and is the sum of the MSE of the unequalized residual error 

and the MSE due to the channel noise amplified by the FE. The TMSE will be derived in 

closed form using a multi level matrix formulation [27], and thereupon minimized 

rigorously to give an estimate of the optimum FE and DFE weights. 

5.1.1 TMSE in the OWSS Receiver 

The definitions of the QAM symbol vector a (of length D), OWSS transmit filter 

 (L taps, assumed to be an integer multiple of M by zero padding if necessary), 

multipath channel c (Nc taps), FE w (Nw taps) and DFE b (Nb taps) are given below 

   

c w

b

T T

0 1 2 D 1 0 1 2 L 1

T T

0 1 2 N 1 0 1 2 N 1

T

0 1 2 N 1

a a a a a ; ;

c c c c c ; w w w w w

b b b b b

     

 



 

     

   

 

 



;       (5.1) 
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The symbol stream upsampled by a factor M (of length MD=M × D) is given by 

         T

up 0 1 2 D 11 M 1 1 M 1 1 M 1 1 M 1
a a 0..0 a 0..0 a 0..0 ..... a 0..0       

         

                                                           (5.2) 

The symbol matrix input A1 to the FE, OWSS filter matrix H1, multipath channel matrix 

C and the adaptive white Gaussian noise (AWGN) matrix N are given by 

 
up

1 1
up

0 0MD MD MD MD

0 0 0 0

a 0 0
A ; H ;

__ a __

__ a __





 

   
   
    
   
   
   

 
 
                                          

 

w w

0

1 0

0 MD 1 MD 2 0MD N MD N

0 0 n 0 0

c 0 n n 0
C ; N

__ c

__ c n n n  

  
  
   
  
  
  

 
 
     










 

                                     (5.3) 

The output of the FE, including the contribution of  noise, is 

  p A H C N w A G w N w   1 1 1 1  where G1 = H1C.                                 (5.4) 

                                                                                      

The symbol matrix input to the DFE (with delay L due to the correlator) and the OWSS 

correlator-downsampler matrix H2 are given by 
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1 M

L 1

up L 12

up L 1

0 MD Nb

T
1 M 1 M

T
1 M 1 M

T
2 1 M 1 M 1 M

T
1 M 1 M 1 M

D MD

0 0 0

0 0

A a 0 ;

__ a : 0

__ ... a

| 0 0

0 | | 0

H 0 0 | | 0

0 0 0


















 

 

  

  


 
 
 
 
 
 
  

 
 
 
   
 
 
  



 








                                             (5.5)                         

 

The output of the DFE is given by 

f A 2 b                                                                                                             (5.6)                         

The input to the slicer (decision device), from the correlator, after the sliding correlation 

and downsampling operation is 

  
 

2

2

2 1 1 2

v H q

  H p f

  H A G w N w A b



 

  

                                                                               (5.7) 

The error signal e (assuming perfect detection of QAM symbols, â = a) is  

e v a                                                                                                               (5.8)                         

Neglecting the effect of noise temporarily, the error signal can be expressed as follows 

 
 2 1 1 2

1 2

e H A G w A b a

  V w V b a

 

  


    

where V1 = H2A1G1  and V2 = H2A2.                                                                                                                       (5.9) 
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Correspondingly, the TMSE is given by 

  2 H E e E e e                                (5.10)  

 

5.1.2 Optimum FE-DFE receiver 

Now, to find the optimum FE-DFE [27] to minimize the MSE,   is differentiated with 

respect to w and b and set the two terms to zero. 

 

 

 

H
w 1 1 2

H H H
1 1 1 2 1

H
b 2 1 2

H H H
2 1 2 2 2

E 2V V w V b a

        2E(V V )w 2E(V V )b 2E(V a ) 0

E 2V V w V b a

       2E(V V )w 2E(V V )b 2E(V a ) 0





     
  

     
  





                                 (5.11)                         

In matrix-vector form, the above equations can be written as 

 

E V V E V V

E V V E V V

w

b

E V a

E V a

Q Q

Q Q

w

b

Q

H H

H H

H

H

H

H

( ) ( )

( ) ( )

( )

( )
1 1 1 2

1 2 2 2

1

2

2 3

3 4

1

0
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
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













 
































 













                    (5.12)                         

Hence the optimum FE and DFE can be estimated (for the noiseless case) as follows 

 
w

b

Q Q

Q Q

Q
H

H







 
























2 3

3 4

1
1

0
                                        (5.13)        

Here,                                                                                                                            

 

Q E a H A G

Q E G A RA G G E A RA G G F G

Q E G A RA G E A RA G F

Q E A RA E A RA F

H

H H H H H

H H H H H

H H

1 2 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 2 1 1 2 1 2

4 2 2 1 2 3



  

  
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( );

( ) ( )

( ) ( ) ;

( ) ( )

1
                   (5.14)                        
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A symbol correlator matrix for M symbols is shown below 

 

T

T

T
all

T

M ( M 1 )L M

0 0 0

0 0 0

P 0 0 0

0 0 0







  

 
 
 
 
 
 
  





    


                                                     (5.15) 

Blocks p of size M × M are extracted. Now let m = L/M. (Note L should be a multiple of 

M). So pi blocks of size M × M , ( i = 1, 2, ...I) where I = m + (M-1) will be created. Also 

let Ip = I/m. Additional p blocks pi ( i = I+1 , ...I+(Ip -1) × M) = ZM ×M are then defined, 

so as to complete the polyphase sequences  given below 

        (5.16) p p p p

1 2 3 I

1 M 2 M 3 M I M

1 2M 2 2M 3 2M I 2M

1 ( I 1)M 2 ( I 1)M 3 ( I 1)M I ( I 1)M

 
     
    
 
 
         





    

 

Now using the above polyphase sequences, R can be expressed (neglecting edge effects) 

as 

H
2 2

T
1 1 2 3
T T
2 1 1 2 I
T T T
3 2 1 1 I

T
I

T
I

T
I

1 1

R H H

p p p p

p p p p p 0 0

p p p p p 0

  
p

0 p

p

0 0 0 p p



  
  
  
  
  
     
  
  
  
  
    


 
  

     
    

  
    

Ip 0 0 













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             (5.17) 

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Note the repeating blocks whose components are given below 

p

p

I
T

i i k*M i k*M
k 0

I
T

i , j i k*M i j k*M
k 0

K p p ;

J p p ; i 1, 2, , M , j 1, 2, , I 1

 

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



  



   
                    (5.18) 

 

The matrix Q1 can be expressed statistically in terms of symbol energy ζ 

H
1 2 1 1

2
0 M 1 M 2M 1 ( I 1 )M 1

Q E( a H A )G

    D .. D ( D 1) .. ( D 1) .. ( D I ) G      



      1 

1

  

                                                                                                                          (5.19) 

 

The matrix Q2 is given by  

                                                                 (5.20) Q G E A RA G G F GH H H
2 1 1 1 1 1 1 ( )
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The diagonal and off diagonal terms of the matrix F1 = E(A1
HRA1) are given by 

   

M
2

1 n n
n 1 n mod( i / M ) 1

M
2

1 n, j M (mod( i / M ) 1 ), j
n 1 j n mod( i / M ) 1

M
2 T T

1 n, j M (mod( i / M ) 1 )
n 1

D i
F ( i,i ) 1 K K

M M

D i
F ( i,i j ) 1 J J J

M M

D i
F ( i j,i ) 1 J J

M M
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 
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              

          

 
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1 1 M X M
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else F ( i,i j ) F ( i j,i ) Z ,where Z is a zero matrix

when given i 1,2,....,D then j I 1, i j D
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 
 

 
    

   

    

 

n, j


) 1

2

3

                          

                                                                                                                                      (5.21) 

The matrix Q3 can also be defined as   

Q G E A RA G FH H H
3 1 1 2 1 ( )                                                                           (5.22) 

Note that the matrix A1 is MD × MD (i.e., D × D blocks), and the matrix A2 is MD × Nb, 

(D × nb blocks) therefore the final matrix is of size MD × Nb (i.e., D × nb blocks), where 

nb  Nb/M. Also note that the first l  L/M block rows of A2 are zero rows. Then F2 = 

E(A1
HRA2) can be obtained from F1 by removing the first l block columns from F1 , 

extracting the next nb block columns and removing the remaining block columns. 

The matrix Q4 can also be determined similarly 

Q E A RA FH
4 2 2 ( )                                                                                      (5.23) 

The final matrix F3 is of size Nb × Nb (i.e., nb × nb blocks), Also note that the first l block 

rows of A2 are zero rows. Then F3 is a submatrix of F2 and can be obtained from F2 by 

removing the first l block rows from F2 , extracting the next nb block rows and removing 

the remaining block rows.  
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Now to consider the effect of AWGN, another matrix Q5 will be incorporated in the 

estimation, from (5.13). Thus the optimum FE and DFE can be estimated (for the AWGN 

case) as follows 

 
w

b

Q Q Q

Q Q

Q
H

H







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













2 5 3

3 4

1

1

0
                                                                      (5.24)      

The matrix Q5 is similar to Q1 and uses AWGN energy σ.  

   



H H
5 2 2 N MD MD

2 2 2
N 

MD MD

Q E N H H N RS ;

where S diag MD MD 1  





 

   
                                   (5.25) 

 

5.2 Simulation Results on the Performance Limits 

5.2.1. Experiment 1 (100 ns Delay-Spread Channel): 

Consider a 108 Mbps, 64 QAM (18 Msps), four users (M=4, L=12) OWSS system 

over a 100 ns rms delay-spread multipath channel [1]. A Naftali channel model [62], [63] 

is used which results in a 9-tap structure.  The receiver’s FE-DFE are optimized for Nw = 

4 and Nb = 8. Adaptive loading [64], [65] is also used based upon the total mean-squared 

error. That is, if the TMSE is below a threshold thr64, 64QAM transmission is used; if it 

is at or above thr64 but below another threshold thr16, 16QAM transmission is used;  

otherwise QPSK transmission is used. Table 5.1 shows the bit error rate for two 

scenarios. In the first case delayed decision is used which is simulated by accepting only 

those channels for which the peak occurs at the zero-th bin; this is a simplified approach 

which can be made more rigorous either by incorporating the delay into the algorithm 

itself, or by LMS algorithm [3]. This delay is bounded by the channel memory, i.e., eight 

samples. The second case is where the decision is not delayed. Also shown are the 
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aggregate bit rates as a result of the adaptive strategy. The results are given for the 

following SNRs: Eb/No = 19 dB, 22 dB, and 25 dB with a 2:1 selection diversity at the 

receiver.  Due to a very sharp roll-off of the spectrum, a bandwidth expansion ratio of just 

1.1, and a corresponding bandwidth of 18*1.1=19.8 MHz are assumed in the calculation 

of the spectral efficiency. Figure 5.2 shows the BER curve for fixed 64QAM symbol 

constellation. Note that this represents the performance in the limit. 

 

5.2.2 Experiment 2 (50 ns Delay-Spread Channel) 

Consider again a 108 Mbps, 64 QAM (18 Msps), four user (M=4) OWSS system. 

However, now a 50 ns rms delay-spread multipath channel (5 taps) will be considered. As 

before, an adaptive loading strategy is used based upon the total mean-squared error. The 

equalizer parameters are Nw=7, Nb=4.  Table 5.2 shows the bit error rate for the situation 

where delayed decision is used which is simulated by accepting only those channels for 

which the peak occurs at the zero-th bin. This is a simplified approach which can be 

made more rigorous either by incorporating the delay into the algorithm itself, or by LMS 

algorithm.  
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Figure 5.2  BER for 108 Mbps 64QAM with 2:1 Selection Diversity (over 100 ns Delay-

Spread Channels) 

It is also useful to remark that Maximal Ratio Combining (MRC) [9] on a 

diversity of 2:1 is used at the receiver. Using this scheme in a 50ns delay spread channel, 

a low BER of 10-5 is achieved at an Eb/No of 19 dB, for an aggregate bit rate of 103.3 

Mbps and a spectral efficiency of 5.2 bits/s/Hz. Of course, this represents performance in 

the limit. 
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5.3 Conclusions 

This chapter has presented a theoretical basis for understanding the limits to the 

ormance of OWSS systems. Multi-level matrix formulation was used in determining 

um receiver for OWSS. Experiments on 108 Mbps (64 QAM) indicate that a 

f 10−5 and spectral efficiencies up to 5.2 bits/s/Hz can be achieved for 50 ns delay 

annels at an SNR of 19 dB. This illustrates the effectiveness of this multi-level 

atrix formulation in determining the optimum receiver for OWSS. For practical 

plementation, future work should attempt an analogous development on a symbol 

rval basis. 
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CHAPTER 6 

A Novel MIMO-STC-OFDM WLAN System 

 

6.1 Introduction 

Fourth generation (4G) wireless technology [2] will provide high bit-rate 

multimedia communication capability, thereby enabling numerous advanced services that 

will significantly benefit the industry, business, government, and the society in general.  

For example, info stations will become pervasive as are today’s beverage-vending 

machines, and high-quality mobile video communication will become widespread as is 

today’s cell telephony.  Such path breaking changes are expected to have a major 

economic impact, nationally as well as globally. This chapter presents a novel MIMO 

STC-OFDM technique [33]-[35] targeted towards 4G data rates, and at the same time 

achieve both high spectral efficiency and high performance (high data rate and low BER) 

over frequency selective channels. This new system is accomplished by a combination, or 

layering [36], of MIMO OFDM [12]-[16] (for high spectral efficiency), group transmit 

signals and antennas (for reduced complexity) [37], space time block coding [38], [39] 

(for reliability), array processing at the receiver [37] (for interference suppression on a 

per carrier basis), and a new Least Squares (LS) decoding scheme (for high performance) 

[33].  The overall approach is portrayed graphically in Figure 6.1. 
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Figure 6.1 The Overall Approach 

Grouped Antennas 
(for reducing 
complexity) 

Array Processing 
(for interference 

suppression) 
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Jain Decoding 
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Novel  
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System 

High Data Rate 
 

High Spectral Efficiency
 

High Performance 
 

Low Error Rate 
 

Low overhead 
 

Low Complexity 

MIMO OFDM  
(for spectral 
efficiency) 

 

Originally proposed by Tarokh et al. [37] for flat fading MIMO systems, the 

group coding of transmit antennas reduces the complexity of receivers in space time 

coded MIMO systems. It partitions transmit antennas into small groups. The received 

signals are then processed by a technique called group interference suppression method 

or array processing. By using interference suppression on a per carrier basis after the 

FFT at the receiver, as suggested by Boubaker et al [57], the technique also lends itself to 

frequency selective multipath channels. Finally, a novel decoding scheme is employed. It 

uses samples from frequencies that are K/2 apart, where K is the total number of FFT 

frequencies, in order to introduce another element of diversity, and then uses least 

squares estimation to yield reliable statistics for symbol detection. Note that this diversity 

is achieved without any cost. The frequency diversity is illustrated in Figure 6.2.  
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Figure 6.2. Frequency Diversity in New System 

 

At 22 dB, this new scheme achieves a BER of 4 x 10-5, without coding or 

interleaving. The data rate achieved, over a bandwidth of 20 MHz, is 144 Mbps with a 

corresponding spectral efficiency of 7.2 bits/s/Hz. If channel coding and interleaving 

gains of 8 dB and 4 dB, respectively, are assumed the proposed technique can achieve a 

BER of 4 x 10-5 at 10 dB and a BER of 10-5 at about 13 dB. However, the data rate would 

then be reduced to 108 Mbps with a spectral efficiency of 7.2 bits/s/Hz. In addition, the 

scheme is a relatively low complexity scheme, e.g., far lower compared to that in [66] 

which  uses linear precoding and space frequency block coding.  

 

6.2 Group Coded Antennas and Array Processing in Flat Fading Channels 

In this section, the scheme proposed by Tarokh et al. [37] to reduce the 

complexity of receivers in space time coded MIMO systems, will be reviewed. It 

partitions the transmit antennas into small groups. The received signals are then 

processed by a technique called group interference suppression or array processing. It 

suppresses the signals from all other groups of antennas as interference, other than the  

specific group of interest which is to be decoded.  Consider, for example, a 4×4 MIMO  
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system shown in Figure 6.3. The four transmit antennas are divided into two groups of 

two antennas each, and each of these groups uses the Alamouti STC code [39]. At the 

receiver the null space of the transpose of the second group’s channel matrix is used to 

extract first group’s signals (from the received signals).  Conversely, the null space of the 

first group’s channel matrix is used to extract second group’s signals. 

Channels

H

Q1
T

Q2
T

Q1=Nullity matrix of L1
T

Q2=Nullity matrix of L2
T

s 1 
s 2 
s 3 
s 4 

Group 1 

Group 2 

+

Decoder / 
Detector 

Decoder / 
Detector 

noisenoise

4 Rx antennas

Channels

H

Q1
T

Q2
T

Q1=Nullity matrix of L1
T

Q2=Nullity matrix of L2
T

s

4 Rx antennas

Decoder / 
Detector 
Decoder / 
Detector 

Decoder / 
Detector 
Decoder / 
Detector 

++

 1 
s 2 
s 3 
s 4 

Group 1 

Group 2 

Matrix Q1 T ann
 T 

ihilates the contributions of TX signals s3 and s 4
and s

 . 
Matrix Q2 annihilates the contributions of TX signals s1  2 . 
Matrix Q1 T ann

 T Matrix Q2
ihilates the contributions of TX signals s3 and s

annihilates the contributions of TX signals s1

 4
and s

 . 
 2 . 

 

Figure 6.3 Grouped Antennas and Array Processing for 4 × 4 System 

 

To elaborate on the theory, consider a MIMO system with N transmit and M 

receive antennas, with the model 

              r = H s + n                                                                                                        (6.1) 

Where the vector s denotes the transmitted signals, r the received signals, and n the 

AWGN. The M×N matrix H = [hij], represents the multiple flat-fading channels.  

 

Assume that the N transmit antennas at the transmitter are partitioned into q  

groups G1, G2,….,Gq, comprising N1, N2,….,Nq antennas, respectively. Using array  
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processing, the transmitted signals from antenna group g (g=1,2,.., q) are 

decoded/detected separately while suppressing signals from all other groups. For 

simplicity, focus on the detection of signals from group 1. The channel matrix H is 

partitioned into two sub matrices, namely V1 which consists of the first N1 columns and 

L1 which contains the remaining N-N1 columns.  Note that V1 corresponds to the 

transmission of the desired group signals, and L1 to the transmission of all other group 

signals, which may be interpreted as interference. To annihilate this interference, Tarokh 

et al. compute a set of orthonormal vectors in the null space of L1
T assembled into a 

matrix Q1. Multiplying both sides of (6.1) by its transpose 

            Q1
T

  r = Q1
T H s + Q1

T
  n                                                                                      (6.2)  

 Since Q1
T

 L1 = 0 , i.e., a zero matrix, (2) can be written as 

Q1
T

 r = Q1
T H1 s1 + Q1

T
  n                                                                                     (6.3) 

where s1 represents the vector of all signals from group 1. Setting 

T T
1 1 1r Q r ; H Q H ; n Q n   T

1                                                                   (6.4)                         

equation (3) can be rewritten as  

1r H s n                                                                                                          (6.5) 

Here all signal-streams out of transmit antennas N1 + 1 , …., N are suppressed. That is, 

the matrix Q1
T annihilates the contributions of signals transmitted from N1+1,.., N; 

similarly Q2
T annihilates the contributions of signals transmitted from 1,..., N1, and  

N1+N2+1,…, N ; and so on. Any of the various schemes could then be used for  

 decoding/detection. The performance of the system can be enhanced considerably by  
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using space time codes on each group, codes that are often called component codes 

[37],[38]. Using array processing [37] each code is decoded separately while suppressing 

signals from the other component codes. This combination of component codes and array 

processing can provide reliable and high data rate communication.  

 

6.3 Grouped Antennas and Array Processing in MIMO-OFDM. 

6.3.1 Frequency Selective Channels in MIMO-OFDM. 

Referring to Figure 6.3, consider an  N×M MIMO-OFDM system with K sub-

carriers. The MIMO channel is modeled as L tap frequency selective channel  hi,j(l) , with 

l=0,1,…,L-1, i=1,2,..,M and j=1,2,..,N. Suppose hi,j(l) is the (i,j) th element of the matrix  

H(l), then the discrete time MIMO baseband signal model at time instant n  is given by  

 )()()()(
1

0

nwlnslHnx
L

l
pfxpfx 





                                                                    (6.6) 

where xpfx(n) is the M dimensional received signal with prefix, spfx(n) is N dimensional 

transmitted signal with prefix and w(n) represents the additive noise. Here the underbar 

connotes a vector. This OFDM system utilizes K sub carriers per antenna transmission 

and a cyclic prefix of G samples to avoid the so-called "Inter-Block-Interference". The 

received MIMO OFDM symbol, after removal of the cyclic prefix, is given by 

 x Γ s w                                                                                                       (6.7) 

 

Here s is the transmitted vector of size KN×1 given by 

TTTT GKsGsGss ])1(....)1()([   with s(n)  being an N×1 sub-vector of the nth 

sample. Similarly x is the KM×1 received vector given by 
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TTTT GKxGxGxx ])1(....)1()([   with x(n) being an M×1 sub-vector of the nth 

sample.  Γ is a KM×KN block circulant matrix of the form 

                                                               (6.8) 

0 K 1 K 2

1 0 K 1

2 1 0

K 1 K 2 K 3 0

Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ Γ Γ Γ

Γ Γ Γ Γ

 



  

 
 
 


 
  





    


1

2

3 


where each individual block Γk , k = 0, 1 , 2, …, K-1, is of size M× N. The KM×N 

dimensional first block-column of Γ is B = [ H(0)M×N 
T

  H(1)M×N  
T… H(L-1)M×N 

T  ZM(K-

L)×N 
T ]T , where Z represents a zero matrix. The transmitted signal can be represented as  

  aIFs NN
H

                                                                                             (6.9) 

where F is a K×K FFT matrix (the superscript H denotes hermitian transpose), a is the 

KN×1 dimensional QAM symbol input given by TTKTT
aaaa ]....[ 110  , where ak  is an 

N×1 symbol vector of the kth subcarrier. Here  denotes the Kronecker product. At the 

receiver, after the removal of cyclic prefix and conversion to frequency domain the signal 

is given by 

 
       H

M M M M N N M My F I x F I Γ F I a F I

Η̂ a n

        

 

w
         (6.10) 

where TTKTT
yyyy ]....[ 110   is the frequency domain KM×1 vector, n is the additive 

frequency domain noise and Ĥ is a block diagonal matrix. 

    

0

1
H

M M N N

K-1

H 0 0

0 H 0
Η̂ F I F I

0 0 H

 

 
 
    
 
 
  




   


                      (6.11) 
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The kth block diagonal element is the N×M  MIMO channel of the kth sub-carrier and 

can be shown to be 
L 1

k

l 0

k l
H H( l )exp j 2

K






  
 

  . So for this sub-carrier the received 

frequency domain signal can be expressed as 

 
k kky H a n  k

                                                                                             (6.12) 

As shown above, the resulting MIMO channel model in the frequency domain on a per 

sub-carrier basis is flat.  

 

6.3.2. Array Processing for Frequency Selective Channels 

In this section, the discussion on array processing is extended to MIMO-

OFDM systems over frequency selective channels. Frequency domain equalization for 

frequency selective channels on a per sub-carrier basis was proposed by Boubaker et al. 

[57] in the context of a VBLAST-OFDM system. Their concept of per sub-carrier based 

MIMO processing is adapted, combined with array processing, thereby extending it to 

MIMO-OFDM systems in frequency selective channel environments. In the frequency 

domain each OFDM sub-carrier undergoes (very nearly) flat fading [6]-[8], and as such 

array processing can be used to separate group signals on a per sub-carrier basis. After 

group interference suppression, further processing such as equalization and 

decoding/detection can be carried out depending on  the particular scheme.  

Consider equation (13), where Hk =[hij
k]  the M×N k-th sub-carrier channel matrix. 

The channel matrix is partitioned into two sub matrices, namely the desired group matrix 

Vk
g and interferer group matrix Lk

g, whereupon array processing is applied to separate out 
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the desired group of interest. Without loss of generality, further details are provided 

below only for group 1. 

k k k k k k
1,1 1,2 1,N 1 1,N 1 1 1,N 1 2 1,N
k k k k k k
2,1 2,2 2,N 1 2,N 1 1 2,N 1 2 2,Nk k

1 1

k k k k k k
M ,1 M ,2 M ,N 1 M ,N 1 1 M ,N 1 2 M ,N

h h h h h h

h h h h h h
V ; L

h h h h h h

 

 

 

  
  
     
  
    

 
 

       
 








T )

      (6.14)                           

Note that the columns of V1
k and those of L1

k when adjoined, form the complete matrix 

Hk. Similar definitions hold for other groups. Now let 

k k
1 1Q null(( L )                                                                                                   (6.15)                          

Then Qk
1

T can  be used for group interference suppression to extract the signals of group 

1, while suppressing the contributions of all other groups.  Multiplying both sides of (12) 

by its transpose 

           Q1
k
  y

k
 = Q1

k Hk sk + Q1
k
  n

k
                                                                                  (6.16)  

 Since Q1
k
 L1

k = 0 , i.e., a zero matrix, (16) can be written as 

         Q1
k
 y

k
 = Q1

k H1
k
 s1

k + Q1
k
  n

k
                                                                                  (6.17) 

where s1
k represents the vector of all signals from group 1. Setting 

 k k kk k k k
1 11 1 1 1 1r Q kky ; U =Q H ; n =Q n                                                            (6.18)                         

equation (3) can be rewritten as  

 k kk
1 1 11r =U s +n k                                                                                                   (6.19) 

As shown in Figure 6.4,  all signal-streams out of transmit antennas N1 + 1 , …., N are 

suppressed. That is, the matrix Q1
k annihilates the contributions of signals (for sub-carrier 

k) transmitted from N1+1,.., N; similarly Q2
k annihilates the contributions of signals  
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Figure 6.4 Array Processing in Frequency Selective MIMO-OFDM Channels 

 

transmitted from 1,..., N1, and N1+N2+1,…, N ; and so on. In general, Qg
k is defined for 

the various other groups to facilitate signal extraction for group g. 

 

It is interesting to observe that each group g could, in the limit, contain only one 

antenna, i.e., each antenna could be transmitting independently. In such a case the 

transmission capacity would increase by N times over a SISO OFDM system. However, 

such a system would suffer in terms of performance and reliability. A reasonable solution 

would be to introduce diversity by use of component codes and array processing, which 

would provide a reliable and performance oriented system with adequate increase in data 

rate.  

 

6.4 Novel MIMO-STC-OFDM System 

A new system is proposed here system which combines the concepts of grouped  

90



www.manaraa.com

antennas, component STC, array processing, MIMO OFDM and a new decoding 

algorithm. The objective is to achieve both high spectral efficiency and high performance. 

A block diagram of the system is shown in Figure 6.5. The approach is the following. 

The transmit antennas are divided into groups, each of which uses a component STC-

OFDM (block) code. At the receiver each component code is decoded by group 

interference suppression method that suppresses signals from other antenna groups as 

interference. This is followed by reassembly of carriers and a novel Least Squares (LS) 

decoding process called Jain decoding to recover the original QAM symbols. For 

definitiveness, consider a 4×4 system (N=4, M=4). The transmit antennas are divided into 

two groups of two each and the input stream of D QAM symbols to each group is space 

time block coded using the block-by-half block Alamouti code [39]. 

 











n)(a)n(a

)n(an)(a
gg

gg

2*12

12*2                                                                                (20) 

where n is half-block index. Note that the underbar connotes a vector. Specifically, here 

the size of each of the symbol vectors is K/2. Also note that the symbol and its associate 

(complex conjugate of the symbol transmitted from the other antenna at the same time) 

are K/2 sub-carrier frequencies apart which provides frequency diversity over symbol-by-

symbol scheme.  

From (6.12), on a per sub-carrier basis the vector of received signals can be written as 

 k kky =H s +nk                                                                                                                    
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Figure 6.5 Novel MIMO-STC-OFDM system 

 

where sk
 is the transmitted signal vector, nk the noise and Hk =[hij

k]  the M×N sub-carrier 

channel matrix. The channel matrix is partitioned into two sub matrices, namely the 

desired group matrix Vk
g and the interferer group’s matrix Lk

g. The array processing 

matrix Qk
g is applied to separate out the desired group of interest, as shown below 

k kk k
g

k k
g g gg

r =Q gy ; U =Q H                                                                                     (6.21) 

Now considering the structure of the Alamouti space time block code, the symbol and its 

conjugate are K/2 sub-carrier frequencies apart. This fact is used in the novel LS 

decoding scheme. The group index (g) details have been omitted below and only two 

symbols a1 and a2 are considered which are carried over frequencies that are K/2 sub-

carrier frequencies apart in a single group.  
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                                               (6.22) 
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The above terms can be grouped below as 

k k

11
KK *k+k+
22 2 2

Ur na
= +

a nUr

                      
                                                                    (6.23) 

(6.22) and (6.23) can also be explained in detail as follows 
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The above equation can also be written as 

R=U a+n                                                                                                                (6.24) 

Finally frequency domain equalization is carried out using the pseudo-inverse and slicing 

is done to recover the received QAM symbols.  

ˆd pinv(U )* R a slicer( d )                                                                  (6.25) 

Although a 4 × 4 system with groups of 2 antennas and Alamouti coding has been 

discussed, however larger systems using various space time block coding schemes are  

possible. To compare the weak diversity (symbol by symbol separation) and strong  diversity  
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(half block by half block), the conditioning of the array processed 2×2 channel matrix (Uk ) is 

studied by comparing their eigenvalues. Recall that the minimum eigenvalue [68] of a matrix is a 

direct measure of its conditionality.  Figure 6.6a shows the minimum eigenvalues for the weak 

diversity case while Figure 6.6b shows results for the strong diversity scheme.  For iteration no. 7, 

in Figure 6.6a, , the minimum (over K sub carriers) channel eigenvalues for the symbol-by-

symbol case are poor, less than  0.2,  for both symbols, while in Figure 6.b, the associate symbol 

which is K/2 sub-carrier frequencies apart has a good minimum eigenvalue of 0.7. As another 

example, for iteration no. 9, the minimum eigenvalues for the weak diversity case are below 0.4 

for both symbols, while in the strong diversity case (Figure 6b), the associate symbol has a 

minimum eigenvalue of 1.5. Thus the half-block by half block based system provides distinct 

performance advantage over the symbol-symbol scheme.  

 

 

Figure 6.6 Eigen Value Analysis of Frequency Diversity for Novel MIMO-STC-OFDM 

System 

 

 94



www.manaraa.com

6.5 Performance of the New MIMO-STC-OFDM System 

6.5.1 Simulation Results 

Simulation results on a 4 × 4 system using the new scheme, Alamouti code with 2 

groups of 2 transmit antennas each are shown in Figure 6.7. The new scheme clearly 

outperforms VBLAST techniques in performance. For a 64-QAM symbol constellation, 

and 50ns delay spread Naftali channel [62], [63] (5 tap) model, to achieve BER = 10-3, 

Group STC-OFDM with Array Processing and Jain Decoding requires only 17 dB 

(Eb/No) compared to 30dB (Eb/No) for an uncoded 802.11a based 64-QAM OFDM 

system. At 19 dB (Eb/No) this new system achieves BERs on the order of 3×10-4, and at 

22 dB on the order of 4×10-5. The spectral efficiency is 9.6 bits/s/Hz (assuming that only 

48 carriers are used for data), which is more than two times that of an 802.11a SISO 

OFDM system. The data rate becomes 144 Mbps. The bandwidth used is 20 MHz.  

Higher spectral efficiencies could be attained with larger systems, say 6 × 4.  

 

Figure 6.7 MIMO-STC-OFDM Simulation Results 
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6.5.2. Comparison with Other MIMO-OFDM techniques 

To compare the novel MIMO STC-OFDM technique with others, the following 

figure of merit is proposed: 

FOM = Spectral Efficiency × (-log10BER) – α × Eb/NodB 

where α is a suitable positive number.  

van Zelst’s MIMO space division multiplexed (SDM) OFDM [13] has a spectral 

efficiency of 1.2 bits/sec/Hz and a BER of 3 × 10-4 at Eb/No of 3 dB; correspondingly for 

α = 0.2, FOM = 11.Shao’s MIMO space frequency block coded (SFBC) OFDM [66] has 

a spectral efficiency of 4.8 bits/sec/Hz with a corresponding BER of 5 × 10-5 at Eb/No of 

19 dB; correspondingly for α = 0.2, FOM = 44. The new technique with spectral 

efficiency of 7.2 bits/sec/Hz and BER of 3 × 10-4 at Eb/No of 19 dB, has a FOM = 55. 

Comparison with other MIMO-OFDM schemes for WLANs based on the Figure of Merit 

is provided in Table 6.1. This is a preliminary Figure of Merit (FOM) definition; and can 

be studied further for its strengths and weaknesses.  

 

6.5.3 Benefits of Channel coding and Interleaving 

In the previous section, a bandwidth of 20 MHz has been used which provisions a 

rate 3/4 channel coding. Therefore, the benefit of channel coding must be taken into 

account. Further, interleaving/deinterleaving can be incorporated at the 

transmitter/receiver which can yet improve the performance. Table 6.2 gives the 

predicted performance estimates using the upper limits GC ≤ 8 dB and GI ≤ 6 dB. 

Admittedly, the BER numbers in this table are only approximate estimates, but they do 

point to the attainable levels of performance. 
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6.6 Conclusion 

high spectral efficiency and high perfor

accom  

signals and antennas, array 

per carrier basis, and a new decoding sc

 

 

 A novel MIMO STC-OFDM technique has been presented that achieves both 

mance over frequency selective channels. This is 

plished by a combination, or layering, of MIMO OFDM, group coded transmit

processing at the receiver for interference suppression on a 

heme which uses components that are K/2 FFT 

frequencies apart and least-squares estimation to arrive at the decision statistics.

Simultaneously, the scheme is a low complexity scheme. At 22 dB, this new scheme

achieves a BER of 4 x 10-5, without coding or interleaving. The data rate achieved, over a 

bandwidth of 20 MHz, is 144 Mbps with a corresponding spectral efficiency of 9.6 

bits/s/Hz. If channel coding and interleaving gains of 8 and 4 dB respectively, are  

assumed, the proposed technique can achieve a BER of 4x10-5 at 10 dB and a BER of  

Table 6.2 Coding and Interleaving Gains for MIMO-STC-OFDM system 

 
SNR (Eb/No) dB 

 

 
Coded 
Rate 
Mbps 

 

 
Data 
Rate 
Mbps 

 
Spectral 

Efficiency 
(bps/Hz) 

 
Coding and 
Interleaving 

Gains 
(GC, GI) 

 

 
10 dB 

 
15 dB 

 
19 dB 

 
22 dB 

 
N/A 

 
144 

 
9.6 

N/A 
(0,0) 

2x10-2 2x10-3 3x10-4 4x10-5 

(5,0) 2x10-3 2x10-4 3x10-5 4x10-6 
(6,0) 1x10-3 10-4 10-5  
(7,0) 8x10-4 5x10-4 8x10-6  

 
 

144 
 

 
 

108 

 
 

7.2 
(8,0) 3x10-4 2x10-5 4x10-6  
(5,3) 3x10-4 2x10-5 4x10-6  
(5,4) 2x10-4 10-5   
(8,3) 8x10-5 8x10-6   

 
 

144 
 

 
 

108 

 
 

7.2 
(8,4)* 4x10-5 4x10-6   
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10-5 at about 13 dB. Correspondingly, the data rate becomes 108 Mbps with a spectral 

efficiency of 7.2 bits/s/Hz. Future work could involve studying and minimizing the 

overhead and extension to other configurations, e.g., 4x3, 4x5, and 6x4. 
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CHAPTER 7 

CHANNEL ESTIMATION FOR THE NEW MIMO-STC-OFDM SYSTEM 

 

7.1 Introduction 

This chapter presents an efficient channel estimation technique for the novel 

MIMO STC-OFDM system, a WLAN signaling scheme with high spectral efficiency and 

high performance over frequency selective channels. The new system employs a 

combination, or layering [36], of MIMO OFDM [12]-[16], group coded transmit signals 

and antennas [37], array processing at the receiver for interference suppression on a per 

carrier basis, frequency diversity which uses FFT components (for STC purposes) that 

are K/2 apart, and a new LS decoding scheme [33], [35] that uses least-squares upon the 

these components. In term of MIMO classification, it is a 4×4 system, i.e., it has four 

transmit and four receive antennas. For a 50 ns delay spread WLAN, the time domain 

formulation [34], [35] for the unknown channel coefficients leads to estimates that have 

an SNR on the order of 48 dB when just one block of 64 symbols per transmitter is used 

and while the receive signal SNR is 19 dB. (Actually, only 52 non-zero symbols, since 

there are twelve zero carriers; 11 at the guardbands, and one at zero frequency.) The final 

4×2 equivalent channel matrix, for each of the two component systems, is shown to have 

a corresponding SNR of 37 dB. Most importantly, the impact on the system BER 

performance due to the channel estimation process (compared to the known channel case) 

is found to be negligible. 
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The training symbol blocks transmitted for channel estimation, preceding the 

actual data transmission, use high power QPSK symbols [44], ±7±7j, which are the outer 

corners of the 64QAM constellation. This leads to a 3 dB advantage over high power 

BPSK symbols with no additional cost. Employing this channel estimation technique on a 

50 ns delay spread WLAN, the new MIMO STC-OFDM scheme [33], [35] achieves a 

BER of 3×10-4 at 19 Db signal SNR, without the need for any channel coding or 

interleaving. The corresponding data rate over a bandwidth of 20 MHz, is 144 Mbps with 

an associated spectral efficiency of 7.2 bits/s/Hz. If a combined 3/4-rate channel coding  

and interleaving [1] gain of 10 dB is assumed, the proposed technique could achieve a 

BER of 3×10-4 at 9 dB signal SNR. Then, the data rate would become 108 Mbps with a 

spectral efficiency of 5.4 bits/s/Hz. Before frequency selective channels, channel 

equalization scheme for Tarokh’s [37] MIMO system using grouped antennas and array 

processing in flat fading channels will be discussed.   

 

7.2 Channel Estimation for Grouped Antennas and Array Processed MIMO System 

in Flat Fading Channels 

In 6.2, a 4×4 MIMO system has been studied with group coded transmit antennas 

and array processing at the receiver. The four transmit antennas are divided into two 

groups of two antennas each, and each of these groups uses the Alamouti STC code [39]. 

At the receiver, array processing was used to separate signals from different groups, i.e. 

the transmitted signals from one antenna group were decoded/detected separately while 

suppressing signals from all other groups. In the case of flat fading channels, the received 

signal is given by 
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r = H s+ n                                                                                                       (7.1) 

Where the vector s denotes the transmitted signals, r the received signals, and n the 

additive white Gaussian noise. The M×N matrix H = [ hij ], represents the multiple flat-

fading channels where M is number of receive antennas and N is number of transmit 

antennas. The channel matrix H is partitioned into two sub-matrices, namely L1 

consisting of channels associated with group 2 and L2 with channels for group 1. The null 

space of the transpose of the second group’s channel matrix is used to extract first 

group’s signals (from the received signals).  Conversely, the null space of the first 

group’s channel matrix is used to extract second group’s signals. Q1 is the null matrix of 

L2
t. Multiplying both sides of (5.1) by its transpose and noting that Q1

T
 L1 = 0. 

Q1
T

  r = Q1
T H s+ Q1

T
  n = Q1

T H1 s1 + Q1
T

  n                                                     (7.2) 

where s1 represents the vector of all group 1 signals and H1 represents channel matrix for 

group 1. Setting 

T T
1 1 1t 1 1 1r Q r ; H Q H ; n Q    T n  

The array processed input to the group 1 decoder is given by                                                                       

1 11tr H s n                                                                                                   (7.3) 

Here all the signals from group 2 are suppressed. This process is repeated for group 2 

where signals from group 1 will be suppressed. For decoding, channel estimation is 

necessary to cancel the effect of array processed matrices H1t and H2t. A channel 

estimation scheme is illustrated in Figure 5.1.  
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Figure 7.1 Channel Estimation for Flat Fading Channels 

 

The channel estimation is done by transmitting a estimation block of data S of size 

4 ×D preceding the transmission of the data block. The estimation blocks use high power 

QPSK symbols {7+7j, 7-7j, -7+7j, -7-7j}. These symbols provide an Eb/No advantage of 

approximately 17 dB over the normal QPSK symbols. The received signal after channel 

mitigation is given by 

R HS N                                                                                                        (7.4) 

The channel matrix estimation is done in the frequency domain, and is given by [34], [35] 

Ĥ = R SH (S SH)-1                                                                                               (7.5) 

For the 4 × 4 system the minimum size of estimation block S is 4 × 4.  S matrices are 

designed to have a conditional number of 1 to enhance the estimation process.  

 

The SNR of the estimated flat channels for channel matrix H, array processed 

matrices H1t and H2t  and BER results for the 4 × 4 64-QAM system (Eb/No = 19 dB)  are 

given in Figure 5.2 for various values of D. The SNR is calculates as given below 

   2

h
ˆe h h SNR E h E e    2   . For example, for D = 16; SNR for estimated 

channels {H, H1t, H2t} were {42.4 dB, 35.8 dB, 35 dB}. Using these estimated channels a  
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7.3 Frequency Domain Estimation for 

Multipath Fading Cha

the New MIMO-STC-OFDM system in 

nnels 

In the system the post FFT received signal on a per sub-carrier basis (k) is  

k k kkr H s n 

Where sk is the per carrier input to the IFFT block at transmitter and nk  is the per carrier 

FFT of noise and Hk is the per sub-carrier FFT of the frequency selective channel. The 

frequency domain channel estimation can also be done on a per sub-carrier basis by using 

estimation frames S preceding the data. The process is illustrated in Figure 7.3. D 

estimation frames of size N ×  K  where K is the number of sub-carriers. For a 4 × 4 - 64 

sub-carrier system D estimation frames of size 4 × 64 will be used. The estimation frames 

igh power symbols and the columns representing sub-carrier k are collected 

over all D frames, they form a matrix Sk of conditional number 1. The received signals 

can also be collected into a similar matrix Rk, and channel estimation carried out on a per 

asis. 

also use h

sub-carrier b

                                                                                        (7.6) 
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64-QAM 4 × 4 system has a BER of 5 × 10-4.  If the minimum D = 4 is used, a BER of 

9.6 × 10-4 is obtained. For perfect channel information, the BER achievable is 3.7 × 10-4, 

however a close performance of 4 × 10-4 can be achieved with D = 60. 



www.manaraa.com

FFT

FFT

ARRAY
PROC.

CP

CP-1

CP

CP-1

IFFT

IFFT f0

fK-1

CP

CPIFFT

IFFT

Channel 
Estimation

on per 
sub-carrier

basis

H0

HK-1

^

^

FFT

FFT

ARRAY
PROC.

CP

CP-1

CP

CP-1

IFFT

IFFT f0

fK-1

CP

CPIFFT

IFFT

Channel 
Estimation

on per 
sub-carrier

basis

H0

HK-1

^

^

 

Figure 7.3 Frequency Domain Channel Estimation for the New MIMO-STC-OFDM 

System 

 

k k k k k k H k k H
k

ˆR H S N H R ( S ) [ S ( S ) ] 1                               (7.7) 

The estimated channel SNR using high power QPSK symbols in the 4 x 4 system with 50 

ns delay spread Naftali channels [62], [63]  for varying values of D are given below in 

Figure 7.4. The channel SNR for each sub-carrier is constant and hence the average 

channel SNR over all carrier is plotted below in the figure. The  SNR of the channel 

estimation for a 50ns delay spread Naftali channel in the 4 × 4 system using 4 estimation 

frames (size 4 × 64) of high power QPSK symbols was found to be 33.4 dB, for 8 frames 

it was 36.4 dB and for16 frames it was 39.4 dB. This represents a drop of 3 dB in 

performance as compared to the flat fading channel case.   
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Figure 7.4 SNR of Estimated Flat Channels for Varying Values of D in a 4 × 4 MIMO-

STC-OFDM System (Eb/No = 19dB) 

 

7.4 Time Domain Channel Estimation for the New MIMO-STC-OFDM System in 

Multipath Fading Channels 

Consider the N × M OFDM system as illustrated in Figure 7.5. The input to the IFFT 

block for the j-th transmitter aj ,  j=1,2,3,..N. The estimation blocks use high power 

QPSK symbols ± 7 ± 7j. The output of the corresponding IFFT operation is sj =ifft (aj) = 

[ sj(1)   sj(2) …   sj(K) ]T where K is the number of sub-carrier frequencies. Cyclic prefix 

is then prepended to these signals before transmission. The M × N channel impulse 

responses, each of length L, are denoted as hi,j , i=1,2, ..M ;  j=1,2,3,..N. Note that hi,j is a 
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column vector of  length L. The received signal at the i-th receive antenna after removal 

of cyclic prefix is given by 

)()()())(*)(()(
1

,
1

, knkrknkskhkr i

N

j
jiij

N

j
jii  


                                            (7.8) 
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Figure 7.5 Time Domain Channel Estimation for the New MIMO-STC-OFDM System 

 

where ni is the noise. The channels associated with the i-th receiver can be collected in a  

vector of size N×L 

 
TTT T

i i ,1 i ,2 i ,Nh h h h 
 


                                                                       (7.9) 

The time domain convolution can be expressed as a matrix vector product. The known 

OFDM symbols can be collected in a circular convolution (rectangular) matrix as shown 

below 
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
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                                              (7.10) 

Then the convolution expression for the received signal can be written as 

 i i i1 2 N

i iK ( N L )

r S | S | | S h n

S h n 

 

 


                                                        (7.11)                           

The matrix  SK×(N×L), applicable to a single frame of channel estimation phase symbols, is 

shown in equation (7.12).  

N N N1 1 1

N N N1 1 1
K ( N L )

N N N1 1 1

| s (1) s ( K ) .. s ( K L 2 )s (1) s ( K ) .. s ( K L 2 )|

| s ( 2 ) s (1) .. s ( K L 3 )s ( 2 ) s (1) .. s ( K L 3 )|
S ..

||

| s ( K ) s ( K 1) .. s ( K L 1)s ( K ) s ( K 1) .. s ( K L 1)|

 

   
   

    

                                           









                                                                                                                                      (7.12) 

If more than one frame is used, SK×(N×L)  matrices for each frame are stacked one on top 

of the other to create a matrix S(B×K)×(N×L) where B is the number of frames. This is shown 

in (7.13) after two pages. Then the channel impulse response  for the i-th receiver can be 

estimated using the least squares criterion, as follows    

 H 1 H
iiĥ ( S S ) S r                                                                                       (7.14)  

The components of the channel impulse response can be separated into individual 

four channels associated with the i-th receiver. The process is repeated for each receiver, 

to estimate all sixteen channel in the 4 × 4 system and thereupon, FFT of the individual 

channel impulse responses will be used for array processing, equalization and decoding.  
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From (7.14), the estimated channel vector can clearly be written as  

 iiĥ C r                                                                                                         (7.15) 

where H 1 HC ( S S ) S                                                                                            (7.16) 

 

The matrix C of equations (7.15) and (7.16) is known and can therefore be pre-

stored. The channel estimation process then involves the matrix-vector multiplication 

C*ri. The matrix C has a size (N×L)×K. For a 50ns delay spread (5 tap channel) 4 × 4 

MIMO WLAN (K=64), C would be a 20 × 64 matrix.  

 

High power BPSK symbols were tried in the estimation process. However they 

suffered from a 3dB SNR loss. If it were possible to design a matrix S, whose columns 

are orthogonal, then SHS will become a diagonal matrix [34], [35]. This may simplify the 

matrix-vector multiplication process in (7.15). 
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112

7.5 Simulations based on the Time Domain Channel Estimation 

The channel estimation can be done using B frames of known time domain 

OFDM symbols (IFFT of high power QPSK symbols) of size K before the actual 

transmission of data symbols. The SNR (SNRh) of estimated channel parameters (Hk) and 

estimated array processed channel parameters (Uk) using varying number of frames is 

shown in Figure 7.6 (for signal Eb/No = 19 dB). The SNR is calculates as  















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,

2
,,,,

ˆ
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param

frequency dom

m

figure also shows the SNR of

dom

based STC-OFDM. For

channels is 48 dB.  

 

 

For example, for one frame (K=64) and 5 tap channel, the SNR of the estimated channel 

eters is 49 dB and for two frames it is 52 dB. The SNR of estimated channel 

eters for the time domain translates in the frequency domain for a per sub-carrier 

ain channel matrix, as FFT of the carrier frequency domain channel 

atrix, as FFT of the estimated time domain channels is a orthogonal transformation. The 

 estimated array processed channels in the frequency 

ain, taking into account the inherent frequency diversity of the system by using block 

 example for one frame the SNR of estimated array processed 
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Figure 7.6 SNR of Time Domain Estimated Channel Parameters at 19 dB Signal SNR 
 
 

Simulation results on a 4×4 system using the time domain estimation scheme and 

Alamouti STC codes with 2 groups of 2 transmit antennas each is shown in Figure 7.7. 

System parameters are as follows: B=1, K=64, 64-QAM symbol constellation, and 50ns 

delay spread Naftali channel [62], [63] (5 tap) model. The spectral efficiency is 9.6 

bits/s/Hz (assuming that only 48 carriers are used for data), which is more than two times 

that of an 802.11a SISO OFDM system [4], [8]. The data rate becomes 144 Mbps. The 

bandwidth used is 20 MHz with K=64 sub-carrier frequencies. These input parameters 

generally conform to the 802.11a standard [4], [8]. The figure shows the BER curves 

with channel estimation and with perfect knowledge of the channel, showing that highly 

efficient results are obtained using a single frame. 
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Figure 7.7 System Performance with Known Channels and Time Domain Channel 

Estimation 

 

7.6 Conclusions 

An efficient time domain formulation for channel estimation has been presented, for the 

new high performance MIMO STC-OFDM system, which uses high power QPSK 

symbols. Four matrix-vector multiplications enable high accuracy estimation of all 

sixteen MIMO channels. For a 50 ns delay spread WLAN, at 22 dB signal SNR this new 

scheme, together with channel estimation incorporation, achieves a BER of 4×10-5 

without coding or interleaving. The corresponding data rate over a bandwidth of 20 MHz, 

is 144 Mbps with a corresponding spectral efficiency of 7.2 bits/s/Hz. Further work could 

involve improvising on the frequency domain channel estimation and optimizing the time 

domain estimation block.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 In this dissertation, two different tech ologies are presented for the next 

 

 

n

generation of high speed WLANs, OWSS and MIMO-STC-OFDM. OWSS, or 

Orthogonal Wavelet Division Multiplexed - Spread Spectrum was first introduce

new class of pulses and a corresponding signaling system which can be a candidate 

signaling scheme for the next generation high speed WLANs. OWSS offers multiple

capability both at the PHY and MAC layers. However, multiplexing at the MAC layer is 

more preferable, as it would enable full rate shared access of the bandwidth (in this case 

108 Mbps) to bursty users. Towards this end, it was proposed that OWSS will use a 

CSMA/CA based MAC protocol similar to the IEEE 802.11a standard to access the 

medium. A frame format for OWSS data packets in the MAC layer and MAC attribu

of OWSS in terms of DCF parameters was also proposed. Using a simple theoretical 

model for performance analysis, the MAC layer of OWSS showed excellent performa

results, a saturation throughput of 66% and an average packet delay of 5 ms using RTS-

CTS – for a moderate number of stations (say, less than 50). At the PHY layer, a critical

attribute of OWSS was looked at, its spectral characteristics. OWSS can avoid substantial

overhead penalties through the elimination of the prefix, the guard zero-carriers, and 

channel. coding, while still providing a desired BER performance at practical SNRs. I

was shown that the theoretical baseband spectrum is perfectly flat, and the passband 

d as a 

xing 

tes 

nce 

 

 

t 
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spectrum offers a 30-40% bandwidth advantage over 802.11a OFDM for 54 Mbps 

operation. OWSS readily extends to higher bit rates, such as 108 Mbps, in a bandwi

efficient manner. Spectrum masks for 54 Mbps and 100 Mbps OWSS operation were als

proposed.  

 

dth 

o 

Unlike the pulses used in OFDM, CDMA, and TDMA, OWSS pulses are based 

al mean-

e 

y low BER 

 

on a new family of pulses which have both a wide time support and a wide frequency 

support. As a consequence of the wide frequency support, effective equalization in a 

multipath environment can be achieved using an FE–DFE structure in the receiver 

together with the LMS adaptation algorithm. The fundamental limits to its system 

performance is investigated out by formulating the system as a multi-rate signal 

processing system, using hierarchical matrices, and thereupon minimizing the tot

square error (TMSE). The TMSE governs the BER performance of the system, and is 

defined as the sum of the MSE of the unequalized residual error and the MSE due to th

channel noise amplified by the forward equalizer.  The problem is formulated at the chip 

level so as to truly discern the fundamental limits to the performance of the equalizer. 

This approach enables estimation of the optimum equalizer for mitigating the effect of 

the multipath channel, prior to correlation and detection blocks embedded in the FE–DFE 

loop, and thereby the system performance. Simulation results demonstrate its 

effectiveness. For a 108 Mbps system with a 50 ns delay spread channel, a ver

of 10−5 and high spectral efficiency up to 5.2 bits/s/Hz can be achieved at a bit SNR of 

19 dB.  
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 Moving away from OWSS, a new MIMO-STC-OFDM system was then 

 

of 

me 

h a 

 

Finally the frequency selective channel for the new 4 × 4 system was modeled. 

nted, 

 

 

introduced that achieves both high spectral efficiency and high performance over

frequency selective channels. This is accomplished by a combination, or layering, 

MIMO OFDM, group coded transmit signals and antennas, array processing at the 

receiver for interference suppression on a per carrier basis, and a new decoding sche

which uses components that are K/2 FFT frequencies apart and least-squares estimation 

to arrive at the decision statistics. Simultaneously, the scheme is a low complexity 

scheme. At 22 dB, this new scheme achieves a BER of 4 x 10-5, without coding or 

interleaving. The data rate achieved, over a bandwidth of 20 MHz, is 144 Mbps wit

corresponding spectral efficiency of 9.6 bits/s/Hz. If coding and interleaving gains of 8 

and 4 dB respectively, are assumed the proposed technique can achieve a BER of 4x10-5

at 10 dB and a BER of 10-5 at about 13 dB. Correspondingly, the data rate will become 

108 Mbps with a spectral efficiency of 7.2 bits/s/Hz. 

 

 

Frequency domain equalization using high power QPSK symbols provided excellent 

results for flat fading channels but did not port too well to the frequency selective 

channels. So an efficient time domain formulation for channel estimation was prese

for the new high performance MIMO STC-OFDM system, which uses high power QPSK

symbols. Four matrix-vector multiplications and a single estimation data frame enabled 

high accuracy estimation of all sixteen MIMO channels. 
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To summarize we again list the specific contributions of this dissertation below. 

idates for the next 

 

d 

SS to access the medium. A 

alyzed vis-a-vis OFDM. The OWSS 

54 

 

eme was developed to compensate for the passband spectral 

cture was 

matrix 

g 

Following this, possible extensions of the work done are discussed.  

(1) OWSS and MIMO-STC-OFDM are both presented as viable cand

generation of high speed WLANs.  OWSS is a new modulation technique capable of high

data rates without using multiple antennas at the transmitter and receiver. MIMO-STC-

OFDM on the other hand, achieves next generation data rates by combining transmit an

receive diversity techniques with legacy OFDM systems.  

(2) A CSMA/CA based MAC protocol is proposed for OW

frame format for OWSS data packets and MAC attributes of OWSS are also proposed. 

Performance of OWSS at the MAC layer in terms of saturation throughput and average 

delay was analyzed using Bianchi's model.  

(3) The spectrum efficiency of OWSS was an

passband spectrum is found to have 30-40% bandwidth advantage over OFDM for 

Mbps operation. OWSS also readily extends to higher bit rates, such as 108 Mbps, in a

bandwidth efficient manner.  

(4) A novel pre-distortion sch

regrowth due to PA non-linearity. At 6 dB backoff in 108 Mbps OWSS, this scheme 

yields an improvement of 10 dB in spectral regrowth distortion levels. 

(5) A Forward Equalizer - Decision Feedback Equalizer (FE-DFE) stru

originally proposed for the OWSS receiver. Towards this end, a novel multi-level 

formulation has been conceptualized to model the entire OWSS transreceiver and 

establish its fundamental theoretical performance (BER) in random multipath fadin
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channels. This formulation can also be used for channel estimation, i.e. to estimate the 

optimum channel equalizer (weights of the FE and DFE) for these channels.  

(5) A new MIMO-STC-OFDM system has been developed that achieves both high 

spectral efficiency and high performance over frequency selective channels. This new 

system was achieved combining MIMO-OFDM, group coding antennas using STC, array 

processing at the receiver (for interference suppression) and new LS decoding technique.  

(6)  A highly effective channel equalization technique in the time domain has also been 

developed for the new MIMO-STC-OFDM system. The multipath channel model for the 

system was also conceptualized.  

 

OWSS achieves high data rates without the use of MIMO technology and if 

combined with MIMO technology is capable of data rates in excess of 200 Mbps within 

current bandwidth limitations. The potent mixture of MIMO, OWSS and STC could 

make these data rates possible with high performance and bandwidth efficiency. Future 

work in OWSS could include a MIMO-OWSS system and reducing the complexity of the 

OWSS receiver. Researchers could also look into other PHY issues related OWSS 

namely effect of offsets, effects of clipping to reduce PAPR etc.  

 

 MIMO-STC-OFDM is a new system based on current trends of R&D for 4G 

WLANs. The 4 × 4 MIMO-STC-OFDM system is capable both of high performance and 

high spectral efficiency at a data rate of 108 Mbps. Future work could involve extending 

the 4 × 4 systems to larger systems such as 6 × 6, capable of even higher data rates. With 

the current system, researchers could look into improvising on the frequency domain 
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channel estimation and optimizing the time domain estimation frames so as to reduce 

overhead and complexity. The susceptibility of MIMO-STC-OFDM to general OFDM 

impairments like frequency offset should also be explored.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120



www.manaraa.com

 

 

REFERENCES 

 

[1] T.S. Rappaport, Wireless Communications, Principles and Practice, 2nd ed.,  
Prentice-Hall Inc., 2002. 

 
[2] R. Prasad and L. Munoz, WLANs and WPANs Towards 4G Wireless, Artech House 

Publishers, 2003. 
 
[3] M. C. Chuah and Q. Zhang, Design and Performance of 3G Wireless Networks and 

Wireless LANs, Springer, 2005. 
 
[4] Local and metropolitan area networks - specific requirements. Part 11: wireless 

LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: 
high-speed physical layer in the 5 GHz band, The Institute of Electrical and 
Electronics Engineering, Inc. Std., IEEE 802.11a, Sept. 1999. 

 
[5] IEEE standard for information technology- telecommunications and information 

exchange between systems- local and metropolitan area networks- specific 
requirements Part II: wireless LAN medium access control (MAC) and physical 
layer (PHY) specifications, IEEE Std 802.11g-2003 (Amendment to IEEE Std 
802.11, 1999 Edn. (Reaff 2003) as amended by IEEE Stds. 802.11a-1999, 802.11b-
1999, 802.11b-1999/Cor 1-2001, and 802.11d-2001) Std., 2003. 

 
[6] R. Prasad and R. Van Nee, OFDM for Wireless Multimedia Communications, 

Artech House Publishers, 2000. 
 
[7] R. Prasad, OFDM for Wireless Communication Systems. Artech House Publishers, 

2004. 
 
[8] J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, SAMS 

Publishing, 2002. 
 
[9] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj and H. V. 

Poor, MIMO Wireless Communications, Cambridge University Press, 2007. 
 
[10] A. J. Paulraj, D. Gore, R. U. Nabar, and H. Bolcskei, “An Overview of MIMO 

Communications - A Key to Gigabit Wireless”, Proceedings of IEEE, 2004.  
 

121



www.manaraa.com

[11] G.J.Foschini and M.J. Gans, "On Limits of Wireless Communications in a Fading 
Environment when Using Multiple Antennas", Wireless Personal Communications, 
vol.6, pp.311-335, 1998. 

 
[12] I. E. Telatar, “Capacity of multi-antenna Gaussian channels”, ATT-Bell Labs 

Murray Hill, Tech. Memo, 1995. 
 
[13] A. van Zelst, T. C. W. Schenk, “Implementation of a MIMO OFDM Based WLAN 

system”, IEEE. Trans. Sig. Proc., vol. 52, no. 2, February 2004. 
 
[14] Z-Y. Ding, C-Y. Chen and T-D. Chiueh, “Design of a MIMO OFDM baseband 

receiver for next-generation wireless LAN,” Proc. Int. Symp. on Circuits and 
Systems, pp, 6551-5654, 2006. 

 
[15] H. Sampath, S. Talwar, J. Tellado, V. Erceg and A Paulraj, “A fourth-generation 

MIMO-OFDM broadband wireless system: design, performance, and field trial 
results”, IEEE Communications Magazine, September 2002. 

 
[16] G.L. Stuber, J.R. Barry, S.W. McLaughlin,  L.Ye, M.A. Ingram and T.G. Pratt, 

“Broadband MIMO-OFDM wireless communications”, Proceedings of the IEEE, 
February 2004. 

 
[17] Y. Xiao, "IEEE 802.11n: enhancements for higher throughput in wireless LANs”, 

IEEE Wireless Communications, December 2005. 
 
[18] R. Van Nee , V. K. Jones, G. Awater, A. Van Zelst, J. Gardner and G. Steele,” The 

802.11n MIMO-OFDM Standard for Wireless LAN and Beyond,” Wireless 
Personal Communications, Springer, May 2006. 

 
[19] V. K. Jain, “OWSS Multiple-access system for 100 Mb/s wireless LANs,” Proc. 

IEEE International Conference on Communications (ICC’2001), pp. 1471-1475. 
 
[20] V. K. Jain, “Hybrid Wavelet/Spread-spectrum System for Broadband Wireless 

LANs,” Proc. Int’l. Symp. Circuits and Sys., May 2001, pp. IV-554 to IV-557. 
 
[21] V. K. Jain and B. A. Myers, “OWSS: A new signaling system for 100-150 Mb/s 

WLANs,” IEEE Wireless Commununications, vol. 10, pp. 16-24, Aug. 2003. 
 
[22] V. K. Jain and B. A. Myers, Communication System Using Orthogonal Wavelet 

Division Multiplexing (OWDM) and OWDM-Spread Spectrum (OWSS) Signaling, 
U.S. Patent No. 7058004, U.S. Patent and Trademark Office.  

 
[23] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall, 1995. 
 
 

122



www.manaraa.com

[24] R. V. Dalal, “Orthogonal Wavelet Division Multiplexing (OWDM) for Broadband 
Wireless Communications,” M.S. thesis, Univ. of South Florida, 1999. 

 
[25] R. L. Peterson, R. E. Ziemer and D. E. Borth, Introduction to Spread Spectrum 

Communications, Prentice Hall, 1995.  
 
[26] D. Divakaran, V.K. Jain and B. Myers, “Spectral characteristics of OWSS signal”, 

IEEE Communication Letters, Vol.9 No. 4, pp 325-327, April 2005. 
 
[27] V. K. Jain, D. Divakaran and B.A. Myers, “Performance limits of OWSS: A 

spectrally efficient WLAN system,” Digital Signal Processing, Vol. 9 No. 4, pp. 
347-366, July 2005.  

 
[28] D. Divakaran, V. K. Jain, and B. A. Myers, “108 Mb/s OWSS WLANs: CSMA/CA 

throughput and delay analysis,” Proc. ASILOMAR Conference on Signals, Systems 
and Computers (ASILOMAR’2003), pp. 522-526. 

 
[29] J. Dholakia, V.K. Jain, B.Myers, “Adaptive equalization for 100 Mbps OWSS 

wireless LANs”, Proc. IEEE GLOBECOM 2001, pp. 162–166. 
 
[30] J. Dholakia, “Multirate Adaptive equalization for 100 Mbps OWSS wireless LANs”, 

M.S. thesis, Univ. of South Florida, 2001. 
 
[31] V. K. Jain and D. Divakaran, Transforming OWSS into a 4G Wireless Technique, 

Final Report to Conexant Systems, March 2004. 
 
[32] V. K. Jain and D. Divakaran, Ultra High Speed OWSS Wireless Networks, Final 

Report to Globespan Virata Systems : Part II, March 2003. 
 
[33] D. Divakaran and V. K. Jain, “A novel MIMO STC-OFDM technique with high 

spectral efficiency and high performance”, Proc. IEEE Radio and Wireless 
Symposium 2008, pp. 299-302, January 2008. 

 
[34] V. K. Jain, and D. Divakaran, “Channel estimation for a new high performance 

MIMO STC-OFDM WLAN system", Proc. Int. Symp. on Circuits and Systems 
(ISCAS 2005), pp. 4473-4476, May 2005. 

 
[35] V. K. Jain and D. Divakaran, Advanced Issues for 4G OFDM Wireless LANS, Final 

Report to Conexant Systems, March 2005.  
 
[36] G. J. Foschini, “Layered space-time architecture for wireless communication in a 

fading environment when using multiple antennas”, Technical Journal, Bell Labs, 
Autumn 1996. 

 
 

123



www.manaraa.com

[37] V. Tarokh, A. Naguib, N. Sheshadri, A.R. Calderbank, “Combined Array 
Processing and Space Time Coding”, IEEE. Trans. Information Theory, vol. 45, no. 
4, May 1999. 

 
[38] V. Tarokh, H. Jafarkhani and A.R. Calderbank, “Space-time block coding for 

wireless communications: performance results,” IEEE Jour. Sel. Areas Comm., vol. 
7, no. 3, March 1999. 

 
[39] S. Alamouti, “ A simple transmit diversity technique for wireless communication,” 

IEEE Jour. Sel. Areas Comm., vol. 16, no. 8, October 1998. 
 
[40] E. Ziouva and T. Antonakopoulos, “CSMA/CA performance under high traffic 

conditions: throughput and delay analysis”, Computer Communications, Elsevier, 
February 2002. 

 
[41] G. Bianchi, "IEEE 802.11 saturation throughput analysis", IEEE Communication 

Letters, Vol. 2, pp. 318 -320, Dec 1998. 
 
[42] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination 

function", IEEE Jour. Sel. Areas Comm., vol. 18, pp. 535-547, March 2000. 
 
[43] R. Prasad, CDMA for Wireless Personal Communications, Artech House Publishers, 

1996.  
 
[44] E. A. Lee and D. G. Messerschmitt, Digital Communications, 2nd edition, Kluwer 

Academic Publishers, 1988. 
 
[45] A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing, Prentice Hall, 

1989. 
 
[46] V. K. Jain, “Unified approach to the Design of Quadrature- Mirror Filters”, Proc. 

IEEE Int. Conf. On Acoustics Speech and Signal Processing, pp. 2085-2088, May 
1997. 

 
[47] V. K. Jain, and R. E. Crochiere, “Quadrature-mirror filter design in time domain,” 

IEEE Trans. on Acoustics Speech and Signal Proc., Vol. ASSP-32, pp. 353-361, 
April 1984. 

 
[48] H. D. Li, and V. K. Jain, “An approach to the design of discrete-time wavelets”, 

Proc. SPIE Conf AeroSense ’96, Vol. 2750, pp. 169-179, April 1996. 
 
[49] L. Andrew, V. T. Franques, and V. K. Jain, “Eigen design of quadrature mirror 

filters”, IEEE Trans. on Circuits and systems II: Analog and Digital Signal 
Processing, pp. 754-757, Sept. 1997. 

 
 

124



www.manaraa.com

[50] R. Ganesh, and K. Pahalvan, “Statistical modeling and computer simulation of 
indoor radio cahannel,” IEE Proceedings-I, Vol. 138, pp. 153-161, June 1991. 

 
[51] R. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice Hall, 

1983. 
 
[52] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless 

Communications, Cambridge University Press, 2003.  
 
[53] G. B. Giannakis, Z. Liu, X. Ma and S. Zhou, Space-time Coding for Broadband Wireless 

Communications, Wiley Inter-Science, 2007.  
 
[54] H. Sampath, P. Stoica and A. Paulraj, “Generalized linear precoder and decoder 

design for MIMO channels using the weighted MMSE criterion”, IEEE Trans. On 
Communications, December 2001.  

 
[55] C. Windpassinger, R. F. H. Fischer, T. Vencel and J.B. Huber, “Precoding in 

multiantenna and multiuser communications”, IEEE Trans. On Wireless 
Communications, July 2004.  

 
[56] X. Li, H. Huang, G. J . Foschini, R. A. Valenzula, “Effects of iterative detection and 

decoding on the performance of BLAST,” Proc. GLOBECOM 2000. 
 
[57] N. Boubaker, K. B. Letaief, R. D. Murch, “A low complexity multicarrier BLAST 

architecture for realizing high data rates over dispersive fading channels,” Proc. 
IEEE VTC 2001. 

 
[58] P.W. Wolniansky, G.J. Foschini, G.D. Golden and R. A. Valenzuala, “V-BLAST: 

an architecture for realizing very high data rates overthe rich-scattering wireless 
channel”, Proc. URSI Intl. Symp. On Signals, Systems and Electronics ISSSE 1998. 

 
[59] W. Stallings, Data & Computer Communications, 6th edition, Prentice Hall, 2000. 
 
[60] S. Abraham, A. Meylan and S. Nanda, “802.11n MAC design and system 

performance”, Proc. Intl. Conf. on Communications ICC 2005. 
 
[61] V. K. Jain, “Very high SFDR interpolation filters for software defined radio,” in 

Proc. IEEE International Workshop on Signal Processing Systems, 2000, pp. 397-
407.  

 
[62] K. Halford, M.Webster, Multipath measurements in wireless LANs, Application 

Note AN9895.1, Intersil Corp., October 2001. 
 
[63] S. M. Nabritt, “Performance of IEEE WLAN in a multipath environment,” Proc. Of 

Communications Design Conference 2003 . 

125



www.manaraa.com

 
[65] C. Li, S. Roy, “Subspace-based blind channel estimation for OFDM by exploiting 

virtual carriers”, IEEE Trans. Wireless Commun. 2003. 
 
[66] L. Shao, S. Sandhu, S. Roy and M. Ho, “High rate space frequency block codes for 

next generation 802.11 WLANs,” Proc. ICC, 2004.  
 
[67] Luca Rugini, Member, IEEE, and Paolo Banelli, “BER of OFDM Systems Impaired 

by Carrier Frequency Offset in Multipath Fading Channels,” IEEE Trans. on 
Comm., pp. 2279-2288, Sept. 2005. 

 
[68] G. E. Shilov, Linear Algebra, Dover Publications, 1977. 
 
[69] Y. Ogawa, K. Nishio, T. Nishimura and T. Ohgane, “A MIMO-OFDM system for 

high-speed transmission,” Proc. of IEEE VTC 2003. 
 
[70] D. Divakaran and W. Moreno, “Compensation of PA nonlinearity in 108 Mbps 

OWSS WLANs”, submitted to the IEEE Topical Conference on Power Amplifiers 
for Wireless Communications, January 2009. 

 
[71] G. T. Zhou and J. S. Kenney, “Predicting spectral regrowth of non-linear power 

amplifiers,” IEEE Trans. on Comm., vol. 50, issue 5, pp 718-722, May 2002. 
 
[72] C. Rapp, “Effects of HPA-Nonlinearity on a 4-DPSK/OFDM Signal for a Digital 

Sound Broadcasting System,” Proc. of the second European Conference on 
Satellite Communications, Belgium, pp. 179-184, October, 1991. 

 
[73] R. Marsalek, P. Jardin and G. Baudoin, “From post-distortion to pre-distortion for 

power amplifiers linearization,” IEEE Communication Letters, vol. 7, issue 7, pp 
308-310, July 2003. 

 
 

 

 

 

 

 

 

[64] S. Thoen, L. Van der Perre, M. Engels, H. De Man, “Adaptive loading for 
OFDM/SDMA-based wireless networks” , IEEE Trans. Commun. 2002. 

126



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

127



www.manaraa.com

Appendix A An Example Based on the Multi Level Matrix Formulation 

For a single stage (M = 2) OWDM synthesizer, the OWDM pulses generated 

using a 4 tap Daubecheis filter is given by φ0 =[-0.3415 0.5915 -0.1585 -0.0915]  and φ1 = 

[-0.0915 0.1585 0.5915 0.3415]. The above OWDM pulses are spread in the wavelet 

domain by using Hadamard codes given by [1  1]  and [1 -1]. The single stage OWSS 

pulses thus generated, are [-0.433  0.75  0.433  0.25] and [-0.25  0.433  -0.75   -0.433].  

For this example, the first pulse, =[-0.4330    0.7500    0.4330    0.2500]  will be used. 

The channel is a real 3 tap channel (L = 3), given by ]10.8-1[c . For  simplicity of 

presentation, only 4 BPSK symbols (D = 4, ζ2 = 1) will be used to estimate the equalizer, 

with Nw = 2 and Nb = 2.  The effect of noise will also be neglected. The OWSS filter 

matrix H1 and  multipath channel matrix C , from (5.3), are given by 
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






























































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1        0.8        1         0          0         0         0         0     

0         1          0.8-     1          0         0         0         0     

0         0           1         0.8-      1         0         0         0     

0         0          0          1           0.8-    1         0         0     

0         0          0          0          1          0.8-    1         0     

0         0          0          0          0          1         0.8-    1     

0         0          0          0          0         0         1         0.8-

 0         0          0          0          0         0         0         1     

 0.433-   0.75     0.433        0.25          0             0             0           0         

0      0.433-     0.75      0.433        0.25          0             0           0         

0         0         0.433-      0.75      0.433        0.25          0           0         

0         0             0         0.433-      0.75      0.433        0.25        0         

0         0             0             0         0.433-      0.75      0.433        0.25    

0         0             0             0             0         0.433-      0.75      0.433    

0         0             0             0             0             0         0.433-      0.75    

0         0             0             0             0             0             0         0.433-  
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Appendix A (Continued) 

The correlator matrix, from (5.5), is given by 
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0.2165-   0.3750      0.3248    0.1875-          0             0             0         0         

0.1875    0.3248      0.6250    0.2165-   0.1875     0.1083-          0         0         

0.1083-   0.1875-   0.2165-   0.3750     0.3248     0.1875-          0         0         

0            0        0.1875    0.3248     0.6250     0.2165-   0.1875    0.1083-   

0            0       0.1083-   0.1875-   0.2165-   0.3750     0.3248    0.1875-   

0            0             0            0       0.1875     0.3248     0.5625    0.3248-   

0            0            0             0       0.1083-   0.1875-   0.3248-   0.1875    

2H
 

 

Neglecting the edge effects, the repetitive component blocks, from (5.18), are given by 
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Using (5.21), matrix F1 can be calculated 
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Appendix A (Continued) 

F2 and F3 are submatrices of F1 


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The matrices Q1, Q2, Q3 and Q4, given in equations (5.19), (5.20), (5.22) and (5.23) can 

now be calculated 

  

 
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


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




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1.2500    0.4330-

0.4330-   0.7500 
;

0.3729-   0.4584-

0.5866    0.7160 

;
1.7119    2.1343-

2.1343-   5.7987 
;0.3248     3.75

43

21

QQ

QQ

Using the above matrices, the optimum FE and DFE are estimated to be 

w = [1.1302    0.8508]  and b = [0.8983   0.5877] 

Using the above equalizer, the normalized MSE of the unequalized error is found 

to be 0.010174. Note that the decision boundary for correct detection of a BPSK symbol 

is a unit distance away from either BPSK symbol, −1 or 1. An MSE of 0.010174 

represents a standard deviation of approximately 0.1, around the transmitted symbols 1 

and −1. If 8 BPSK symbols are used to estimate the equalizer, the FE and DFE are found 

to be w = [1.1053    0.7902] and b = [0.90298   0.62995] and the normalized MSE 

improves to 0.0068931. Finally if 100 BPSK symbols are used, the FE and DFE are  
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Appendix A (Continued) 

estimated to be w = [1.0894    0.55148]  and b = [1.112   0.76697] and the normalized 

MSE is further reduced to 0.0044986.  

 

For illustration purposes, a Nw = 2-tap FE is used. For a longer 5-tap FE and 100 

symbols for estimation, the optimum equalizer turns out to be w = [1.1394, 0.57591, 

−0.31036, 0.037525, 0.12544] and b = [0.80517, 0.3338], with a corresponding MSE = 

6.7 × 10−5. The feedback equalizer was still maintained at a length Nb = 2. This success, 

even for a difficult channel, may be attributed to the wide frequency support of the 

OWSS pulses. As a reminder, in this simple example, the effect of AWGN was ignored. 
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